为什么非 const std::array::operator[] 不是 constexpr?

Why is non-const std::array::operator[] not constexpr?

我正在尝试使用给定函数在编译时填充二维数组。这是我的代码:

template<int H, int W>
struct Table
{
  int data[H][W];
  //std::array<std::array<int, H>, W> data;  // This does not work

  constexpr Table() : data{}
  {
    for (int i = 0; i < H; ++i)
      for (int j = 0; j < W; ++j)
        data[i][j] = i * 10 + j;  // This does not work with std::array
  }
};

constexpr Table<3, 5> table;  // I have table.data properly populated at compile time

它工作得很好,table.data 在编译时正确填充。

但是,如果我将普通二维数组 int[H][W] 更改为 std::array<std::array<int, H>, W>,我在循环体中会出错:

error: call to non-constexpr function 'std::array<_Tp, _Nm>::value_type& std::array<_Tp, _Nm>::operator[](std::array<_Tp, _Nm>::size_type) [with _Tp = int; long unsigned int _Nm = 3ul; std::array<_Tp, _Nm>::reference = int&; std::array<_Tp, _Nm>::value_type = int; std::array<_Tp, _Nm>::size_type = long unsigned int]'
data[i][j] = i * 10 + j;
^
Compilation failed

显然,我正在尝试调用 std::array::operator[] 的非常量重载,这不是 constexpr。问题是,为什么不是constexpr呢?如果 C++14 允许我们修改在 constexpr 范围内声明的变量,为什么 std::array 不支持?

我曾经认为 std::array 就像普通数组一样,只是更好。但这里有一个例子,我可以使用普通数组,但不能使用 std::array.

虽然我的第一个想法是 "why would you need a constexpr method on a non-const array"? ...

然后我坐下来写了一个小测试,看看这个想法是否有意义:

#include <iostream>

using namespace std;
struct X{

    constexpr X()
    : _p { 0, 1, 2, 3, 4, 5, 6, 7, 9 }
    {
    }

    constexpr int& operator[](size_t i)
    {
        return _p[i];
    }

    int _p[10];
};

constexpr int foo()
{
    X x;
    x[3] = 4;
    return x[3];
}


auto main() -> int
{
    cout << foo() << endl;

    return 0;
}

事实证明确实如此。

所以我得出的结论是,委员会采取了与我相同的 "obvious" 观点并否决了这个想法。

在我看来,好像可以向委员会提出一项提案以在 c++17 中对其进行更改 - 以这个问题为例。

std::array::operator[] 因为 C++14 是 constexpr 但也是 const 合格的:

constexpr const_reference operator[]( size_type pos ) const;
                                                      ^^^^^

因此您必须强制转换数组以调用正确的 operator[] 重载:

template<int H, int W>
struct Table
{
  //int data[H][W];
  std::array<std::array<int, H>, W> data;  // This does not work

  constexpr Table() : data{} {
    for (int i = 0; i < W; ++i)
      for (int j = 0; j < H; ++j)
        const_cast<int&>(static_cast<std::array<int, H> const&>(static_cast<std::array<std::array<int, H>, W> const&>(data)[i])[j]) = 10 + j;
  }
};

Live Demo

编辑:

与某些人相反,以这种方式使用 const_cast 并不意味着未定义的行为。事实上,正如在放宽 constexpr 的提案中所提议的那样,用户需要使用 const_cast 来解决此问题,以便至少在问题解决之前引发正确的下标运算符重载在 C++17 中 ().

好吧,确实是标准疏忽了。甚至存在解决此问题的建议:http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0107r0.pdf

[N3598] removed the implicit marking of constexpr member functions as const. However, the member functions of std::array were not revisited after this change, leading to a surprising lack of support for constexpr in std::array’s interface. This paper fixes this omission by adding constexpr to the member functions of std::array that can support it with a minimal amount of work.

UPD:已在 C++17 中修复:https://en.cppreference.com/w/cpp/container/array/operator_at

这个问题让我很感兴趣,所以我决定找出一个解决方案,允许在编译时使用一个以 x 和 y 作为参数的函数初始化数组。

大概这可以适用于任意数量的维度。

#include <iostream>
#include <utility>


// function object that turns x and y into some output value. this is the primary predicate
struct init_cell_xy
{
    constexpr init_cell_xy() = default;

    constexpr int operator()(int x, int y) const
    {
        return (1 + x) * (1 + y);
    }
};

// function object that applies y to a given x
template<int X = 1>
struct init_cell_for_x
{
    constexpr init_cell_for_x() = default;

    constexpr int operator()(int y) const
    {
        return _xy(X, y);
    }

private:
    init_cell_xy _xy;
};

// an array of dimension 1, initialised at compile time
template<int Extent>
struct array1
{
    template<class F, int...Is>
    constexpr array1(F&& f, std::integer_sequence<int, Is...>)
    : _values { f(Is)... }
    {}

    template<class F>
    constexpr array1(F&& f = init_cell_for_x<>())
    : array1(std::forward<F>(f), std::make_integer_sequence<int, Extent>())
    {}

    constexpr auto begin() const { return std::begin(_values); }
    constexpr auto end() const { return std::end(_values); }
    constexpr auto& operator[](size_t i) const {
        return _values[i];
    }

private:
    int _values[Extent];

    friend std::ostream& operator<<(std::ostream& os, const array1& s)
    {
        os << "[";
        auto sep = " ";
        for (const auto& i : s) {
            os << sep << i;
            sep = ", ";
        }
        return os << " ]";
    }
};

// an array of dimension 2 - initialised at compile time
template<int XExtent, int YExtent>
struct array2
{
    template<int...Is>
    constexpr array2(std::integer_sequence<int, Is...>)
    : _xs { array1<YExtent>(init_cell_for_x<Is>())... }
    {}

    constexpr array2()
    : array2(std::make_integer_sequence<int, XExtent>())
    {}

    constexpr auto begin() const { return std::begin(_xs); }
    constexpr auto end() const { return std::end(_xs); }
    constexpr auto& operator[](size_t i) const {
        return _xs[i];
    }

private:
    array1<YExtent> _xs[XExtent];

    friend std::ostream& operator<<(std::ostream& os, const array2& s)
    {
        os << "[";
        auto sep = " ";
        for (const auto& i : s) {
            os << sep << i;
            sep = ",\n  ";
        }
        return os << " ]";
    }

};




auto main() -> int
{
    using namespace std;

    constexpr array2<6,6> a;

    cout << a << endl;
    return 0;
}