max() 与 ORDER BY DESC + LIMIT 1 的性能对比

Performance of max() vs ORDER BY DESC + LIMIT 1

我今天正在对一些缓慢的 SQL 查询进行故障排除,不太了解下面的性能差异:

当尝试根据某些条件从数据 table 中提取 max(timestamp) 时,如果存在匹配行,则使用 MAX()ORDER BY timestamp LIMIT 1 慢,但相当大如果没有找到匹配的行,速度会更快。

SELECT timestamp
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 4
ORDER BY timestamp DESC
LIMIT 1;
(0 rows)  
Time: 1314.544 ms

SELECT timestamp
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 5
ORDER BY timestamp DESC
LIMIT 1;
(1 row)  
Time: 10.890 ms

SELECT MAX(timestamp)
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 4;
(0 rows)
Time: 0.869 ms

SELECT MAX(timestamp)
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 5;
(1 row)
Time: 84.087 ms 

(timestamp)(sensor_id, timestamp) 上有索引,我注意到 Postgres 在这两种情况下使用非常不同的查询计划和索引:

QUERY PLAN (ORDER BY)                                              
--------------------------------------------------------------------------------------------------------
Limit  (cost=0.43..9.47 rows=1 width=8)
    ->  Nested Loop  (cost=0.43..396254.63 rows=43823 width=8)
          Join Filter: (data.sensor_id = sensors.id)
          ->  Index Scan using timestamp_ind on data  (cost=0.43..254918.66 rows=4710976 width=12)
          ->  Materialize  (cost=0.00..6.70 rows=2 width=4)
              ->  Seq Scan on sensors  (cost=0.00..6.69 rows=2 width=4)
                  Filter: (station_id = 4)
(7 rows)

QUERY PLAN (MAX)                                               
----------------------------------------------------------------------------------------------------------
Aggregate  (cost=3680.59..3680.60 rows=1 width=8)
    ->  Nested Loop  (cost=0.43..3571.03 rows=43823 width=8)
        ->  Seq Scan on sensors  (cost=0.00..6.69 rows=2 width=4)
              Filter: (station_id = 4)
        ->  Index Only Scan using sensor_ind_timestamp on data  (cost=0.43..1389.59 rows=39258 width=12)
              Index Cond: (sensor_id = sensors.id)
(6 rows)

所以我的两个问题是:

  1. 这种性能差异从何而来?我在这里 MIN/MAX vs ORDER BY and LIMIT 看到了公认的答案,但这似乎并不适用于此。任何好的资源将不胜感激。
  2. 是否有比添加 EXISTS 检查更好的方法来提高所有情况下的性能(匹配行与无匹配行)?

编辑 以解决以下评论中的问题。我保留了上面的初始查询计划以供将来参考:

Table定义:

                                  Table "public.sensors"
        Column        |          Type          |                            Modifiers                            
----------------------+------------------------+-----------------------------------------------------------------
id                    | integer                | not null default nextval('sensors_id_seq'::regclass)
station_id            | integer                | not null
....

Indexes:
    "sensor_primary" PRIMARY KEY, btree (id)
    "ind_station_id" btree (station_id, id)
    "ind_station" btree (station_id)

                                  Table "public.data"
  Column   |           Type           |                            Modifiers                             
-----------+--------------------------+------------------------------------------------------------------
 id        | integer                  | not null default nextval('data_id_seq'::regclass)
 timestamp | timestamp with time zone | not null
 sensor_id | integer                  | not null
 avg       | integer                  |

Indexes:
    "timestamp_ind" btree ("timestamp" DESC)
    "sensor_ind" btree (sensor_id)
    "sensor_ind_timestamp" btree (sensor_id, "timestamp")
    "sensor_ind_timestamp_desc" btree (sensor_id, "timestamp" DESC)

请注意,我刚刚在下面@Erwin 的建议之后在 sensors 上添加了 ind_station_id。时间并没有真正发生巨大变化,在 ORDER BY DESC + LIMIT 1 情况下仍然是 >1200ms,在 MAX 情况下仍然是 ~0.9ms

查询计划:

QUERY PLAN (ORDER BY)
----------------------------------------------------------------------------------------------------------
Limit  (cost=0.58..9.62 rows=1 width=8) (actual time=2161.054..2161.054 rows=0 loops=1)
  Buffers: shared hit=3418066 read=47326
  ->  Nested Loop  (cost=0.58..396382.45 rows=43823 width=8) (actual time=2161.053..2161.053 rows=0 loops=1)
        Join Filter: (data.sensor_id = sensors.id)
        Buffers: shared hit=3418066 read=47326
        ->  Index Scan using timestamp_ind on data  (cost=0.43..255048.99 rows=4710976 width=12) (actual time=0.047..1410.715 rows=4710976 loops=1)
              Buffers: shared hit=3418065 read=47326
        ->  Materialize  (cost=0.14..4.19 rows=2 width=4) (actual time=0.000..0.000 rows=0 loops=4710976)
              Buffers: shared hit=1
              ->  Index Only Scan using ind_station_id on sensors  (cost=0.14..4.18 rows=2 width=4) (actual time=0.004..0.004 rows=0 loops=1)
                    Index Cond: (station_id = 4)
                    Heap Fetches: 0
                    Buffers: shared hit=1
Planning time: 0.478 ms
Execution time: 2161.090 ms
(15 rows)

QUERY (MAX)
----------------------------------------------------------------------------------------------------------
Aggregate  (cost=3678.08..3678.09 rows=1 width=8) (actual time=0.009..0.009 rows=1 loops=1)
   Buffers: shared hit=1
   ->  Nested Loop  (cost=0.58..3568.52 rows=43823 width=8) (actual time=0.006..0.006 rows=0 loops=1)
         Buffers: shared hit=1
         ->  Index Only Scan using ind_station_id on sensors  (cost=0.14..4.18 rows=2 width=4) (actual time=0.005..0.005 rows=0 loops=1)
               Index Cond: (station_id = 4)
               Heap Fetches: 0
               Buffers: shared hit=1
         ->  Index Only Scan using sensor_ind_timestamp on data  (cost=0.43..1389.59 rows=39258 width=12) (never executed)
               Index Cond: (sensor_id = sensors.id)
               Heap Fetches: 0
 Planning time: 0.435 ms
 Execution time: 0.048 ms
 (13 rows)

所以就像前面解释的那样,ORDER BY 做了一个 Scan using timestamp_in on data,而在 MAX 的情况下没有做。

Postgres 版本: 来自 Ubuntu 回购的 Postgres:PostgreSQL 9.4.5 on x86_64-unknown-linux-gnu, compiled by gcc (Ubuntu 5.2.1-21ubuntu2) 5.2.1 20151003, 64-bit

请注意,存在 NOT NULL 约束,因此 ORDER BY 不必对空行进行排序。

另请注意,我对差异的来源非常感兴趣。虽然不理想,但我可以使用 EXISTS (<1ms) 然后 SELECT (~11ms).

相对快速地检索数据

查询计划显示索引名称 timestamp_indtimestamp_sensor_ind。但是这样的索引对搜索特定传感器没有帮助。

要解析等号查询(如 sensor.id = data.sensor_id),该列必须是索引中的第一个。尝试添加一个允许在 sensor_id 上搜索的索引,并在传感器内按时间戳排序:

create index sensor_timestamp_ind on data(sensor_id, timestamp);

添加该索引是否会加快查询速度?

sensor.station_id 上似乎没有索引,这很可能在这里很重要。

max()ORDER BY DESC + LIMIT 1 之间存在实际 差异 。很多人似乎都忽略了这一点。 NULL 值按降序排序 first。所以 ORDER BY timestamp DESC LIMIT 1 returns 一行 timestamp IS NULL 如果它存在,而聚合函数 max() 忽略 NULL 值和 returns 最新的非空时间戳。

对于您的情况,由于您的列 d.timestamp 被定义为 NOT NULL(正如您的更新显示的那样),没有有效差异。带有 DESC NULLS LAST 的索引和 ORDER BY 中用于 LIMIT 查询的相同子句应该仍然能为您提供最好的服务。我建议这些 indexes(我下面的查询基于第二个):

sensor(station_id, id)
data(sensor_id, timestamp <b>DESC NULLS LAST</b>)

您可以删除其他索引变体 sensor_ind_timestampsensor_ind_timestamp_desc 除非您还有其他查询需要它们(不太可能,但可能)。

更重要的是,还有一个难点:第一个tablesensorsreturns的过滤器很少,但仍然(可能) 多行。 Postgres 期望 在您添加的 EXPLAIN 输出中找到 2 行 (rows=2)。
完美的技术是 松散索引扫描 第二个 table data - 目前尚未在 Postgres 中实现9.4(或 Postgres 9.5)。您可以重写查询以通过多种方式解决此限制。详情:

  • Optimize GROUP BY query to retrieve latest record per user

最好的应该是:

SELECT d.timestamp
FROM   sensors s
CROSS  JOIN LATERAL  (
   SELECT timestamp
   FROM   data
   WHERE  sensor_id = s.id
   ORDER  BY timestamp DESC NULLS LAST
   LIMIT  1
   ) d
WHERE  s.station_id = 4
ORDER  BY d.timestamp DESC NULLS LAST
LIMIT  1;

由于外部查询的风格大多是无关紧要的,你也可以只:

SELECT max(d.timestamp) AS timestamp
FROM   sensors s
CROSS  JOIN LATERAL  (
   SELECT timestamp
   FROM   data
   WHERE  sensor_id = s.id
   ORDER  BY timestamp DESC NULLS LAST
   LIMIT  1
   ) d
WHERE  s.station_id = 4;

max() 变体现在的执行速度应该差不多:

SELECT max(d.timestamp) AS timestamp
FROM   sensors s
CROSS  JOIN LATERAL  (
   SELECT max(timestamp) AS timestamp
   FROM   data
   WHERE  sensor_id = s.id
   ) d
WHERE  s.station_id = 4;

甚至,最短

SELECT max((SELECT max(timestamp) FROM data WHERE sensor_id = s.id)) AS timestamp
FROM   sensors s
WHERE  station_id = 4;

注意双括号!

LIMITLATERAL 连接中的额外优势是您可以检索所选行的任意列,而不仅仅是最新的时间戳(一列)。

相关:

  • Why do NULL values come first when ordering DESC in a PostgreSQL query?
  • Select first row in each GROUP BY group?
  • Optimize groupwise maximum query