fmin_l_bfgs_b 输出的最小值处的梯度不为零

The gradient at the minimum outputted by fmin_l_bfgs_b are not zero

我正在使用 fmin_l_bfgs_b 来逼近函数的最小值。问题不受限制。我正在使用 "approx_grad" 在数字上获得最小值。

weights_sp_new, func_val, info_dict = fmin_l_bfgs_b(func_to_minimize, self.w_vectors[si][pj], 
                       args=(self.sigma_vector[si][pj], Y, X, E_step_results[si][pj]),
                       approx_grad=True, factr=10000000.0, pgtol=1e-05, epsilon=1e-04)

我在相同的 objective 函数上尝试了不同的初始猜测。输出的信息字典如下:

     information dictionary: {'nit': 180, 'funcalls': 4480, 'warnflag': 0, 
'task': b'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH', 
    'grad': array([  1.69003327e+00,   2.29250366e+00,   1.55528930e+00,
                 9.84251656e-01,  -1.10133624e-02,   1.83795773e+00,
                 6.44715933e-01,   2.01643592e+00,   8.71323232e-01,
                 9.93009353e-01,   1.34615338e+00,   4.20859578e-04,
                -2.22691328e-01,  -2.13318804e-01,  -4.38475622e-01,
                 4.79004570e-01,  -4.11879746e-01,   1.71003313e+00])}


        information dictionary: {'nit': 0, 'funcalls': 20, 'warnflag': 0, 
'task': b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL', 
    'grad': array([  1.84672949e-20,   1.49550746e-20,   1.11115003e-20,
                 2.73908962e-20,   0.00000000e+00,   2.62916240e-20,
                 0.00000000e+00,   4.95859400e-20,   4.70618521e-20,
                 4.77249742e-20,   2.80864703e-20,   0.00000000e+00,
                 1.84975333e-21,   7.63125358e-21,   1.35733459e-20,
                 6.34943656e-21,   1.02743864e-20,   5.31287405e-20])}

        information dictionary: {'nit': 107, 'funcalls': 2460, 'warnflag': 0, 
'task': b'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH', 
    'grad': array([ -3.09184019,  -0.70217764,   0.72096009,  -3.23745189,
                -1.18111435,  -4.13185742,   3.90762754,   2.28011806,
                -3.02289147,  -1.21219666,   1.80007832, -12.44630606,
                -1.59126124,   1.59139978,  -1.96677574,  -0.50837465,
                 1.20439043,  -1.58858602])}

        information dictionary: {'nit': 132, 'funcalls': 2980, 'warnflag': 0, 
'task': b'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH', 
    'grad': array([ -8.56568098,  -9.39712794,  -8.82591339,  -8.61912864,
                -0.53956945,  -9.46679887,   0.89827947, -10.64991782,
                -6.53652169,  -7.34566878,  -8.98861319,   1.28335021,
                -2.39830071,  -1.2056133 ,  -0.81190425,  -1.3537686 ,
                -1.65028498,  -8.30791505])}

可以看到收敛成功了。但是最小值的梯度不为零。我知道这意味着我没有得到确切的最小值。它可以进一步下降。我现在应该怎么办?或者我可以只接受这个 "approximated" 的最低限度吗?

提供的样本中有两种情况:

  1. 你的算法的第二个 运行 很好地收敛,b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' 正如你所看到的

    'grad': 数组([ 1.84672949e-20, 1.49550746e-20, 1.11115003e-20, 2.73908962e-20, 0.00000000e+00, 2.62916240e-20, 0.00000000e+00, 4.95859400e-20, 4.70618521e-20, 4.77249742e-20, 2.80864703e-20, 0.00000000e+00, 1.84975333e-21、7.63125358e-21、1.35733459e-20、 6.34943656e-21、1.02743864e-20、5.31287405e-20])

    基本为零(最多20位精度)。

  2. 其余案例由于函数值没有显着变化而终止,b'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH',因此您可以执行以下一项(或多项)操作:

    • 减少 fmin_l_bfgs_bfactr 参数,来自文档

      factr : float

      The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy.

    • 想想你的功能,也许可以简化一下?平台(非常平坦的表面)是否有问题 - 如果是,也许您可​​以更改定义以最小化影响?

    • 计算分析梯度(从而提高精度)
    • 更改 epsilon,因为您的数值近似值可能不够