Spark ML 管道 api 保存不工作

Spark ML Pipeline api save not working

在 1.6 版中,管道 api 获得了一组新功能来保存和加载管道阶段。我尝试在训练分类器后将阶段保存到磁盘,稍后再次加载它以重用它并节省再次计算模型的工作量。

由于某些原因,当我保存模型时,该目录仅包含元数据目录。当我尝试再次加载它时,出现以下异常:

Exception in thread "main" java.lang.UnsupportedOperationException: empty collection at org.apache.spark.rdd.RDD$$anonfun$first.apply(RDD.scala:1330) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) at org.apache.spark.rdd.RDD.first(RDD.scala:1327) at org.apache.spark.ml.util.DefaultParamsReader$.loadMetadata(ReadWrite.scala:284) at org.apache.spark.ml.tuning.CrossValidator$SharedReadWrite$.load(CrossValidator.scala:287) at org.apache.spark.ml.tuning.CrossValidatorModel$CrossValidatorModelReader.load(CrossValidator.scala:393) at org.apache.spark.ml.tuning.CrossValidatorModel$CrossValidatorModelReader.load(CrossValidator.scala:384) at org.apache.spark.ml.util.MLReadable$class.load(ReadWrite.scala:176) at org.apache.spark.ml.tuning.CrossValidatorModel$.load(CrossValidator.scala:368) at org.apache.spark.ml.tuning.CrossValidatorModel.load(CrossValidator.scala) at org.test.categoryminer.spark.SparkTextClassifierModelCache.get(SparkTextClassifierModelCache.java:34)

保存我使用的模型:crossValidatorModel.save("/tmp/my.model")

加载它我使用:CrossValidatorModel.load("/tmp/my.model")

我在调用 CrossValidatorModel 对象时调用 fit(dataframe) 时得到的 CrossValidatorModel 对象调用保存。

任何指针为什么它只保存元数据目录?

这肯定不会直接回答你的问题,但我个人并没有测试 1.6.0 中的新功能。

我正在使用专用功能来保存模型。

  def saveCrossValidatorModel(model:CrossValidatorModel, path:String)
  {
    try {
          val fileOut:FileOutputStream  = new FileOutputStream(path)
          val out:ObjectOutputStream  = new ObjectOutputStream(fileOut)
          out.writeObject(model)
          out.close()
          fileOut.close()
      } catch {
        case foe:FileNotFoundException =>
          foe.printStackTrace()
        case ioe:IOException =>
          ioe.printStackTrace()
      }
  }

然后您可以用类似的方式阅读您的模型:

  def loadCrossValidatorModel(path:String): CrossValidatorModel =
  {
    try {
      val fileIn:FileInputStream = new FileInputStream(path)
      val in:ObjectInputStream  = new ObjectInputStream(fileIn)
      val cvModel = in.readObject().asInstanceOf[CrossValidatorModel]
      in.close()
      fileIn.close()
      cvModel
    } catch {
        case foe:FileNotFoundException =>
          foe.printStackTrace()
        case ioe:IOException =>
          ioe.printStackTrace()
      }
  }