将季度和财政年度列合并到 pandas 中的日期列

Combining quarter and financial year columns into date column in pandas

我有一个 pandas 数据框,其中财政年度列在一列中,季度列在另一列中。

我想将它们合并成一个列。

格式为:

Financial Year   Financial Quarter
2015/16          1
2015/16          1

我正计划基于“财政年度”列创建一个日期列,然后按“财政季度”对其进行抵消。

我的第一步是:

df['date'] = pd.to_datetime(df['Financial Year'], format="%Y/%y")

但是我在第二步有点卡住了。

是否有更好的方法将来自多个列的字符串数据一次组合起来?

IIUC 您可以先从 Financial Year 列中提取年份,然后将 BQuarterBegin and applyyear1year2 列一起使用:

from pandas.tseries.offsets import *

print df
  Financial Year  Financial Quarter
0        2015/16                  1
1        2015/16                  1

df[['year1', 'year2']] = pd.DataFrame([ x.split('/') for x in df['Financial Year'].tolist()])
df['year1'] = pd.to_datetime(df['year1'], format="%Y") 
df['year2'] = pd.to_datetime(df['year2'], format="%y") 
print df
  Financial Year  Financial Quarter      year1      year2
0        2015/16                  1 2015-01-01 2016-01-01
1        2015/16                  1 2015-01-01 2016-01-01

df['date1'] = df.apply(lambda x:(x['year1'] + BQuarterBegin(x['Financial Quarter'])), axis=1)
df['date2'] = df.apply(lambda x:(x['year2'] + BQuarterBegin(x['Financial Quarter'])), axis=1)
print df
  Financial Year  Financial Quarter      year1      year2      date1  \
0        2015/16                  1 2015-01-01 2016-01-01 2015-03-02   
1        2015/16                  1 2015-01-01 2016-01-01 2015-03-02   

       date2  
0 2016-03-01  
1 2016-03-01