为什么 floatX 的标志会影响 Theano 中是否使用 GPU?

Why does the floatX's flag impact whether GPU is used in Theano?

我正在使用 GPU 测试 Theano script provided in the tutorial for that purpose:

# Start gpu_test.py
# From http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in xrange(iters):
    r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters, t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
    print('Used the cpu')
else:
    print('Used the gpu')
# End gpu_test.py

如果我指定 floatX=float32,它在 GPU 上运行:

francky@here:/fun$ THEANO_FLAGS='mode=FAST_RUN,device=gpu2,floatX=float32' python gpu_test.py
Using gpu device 2: GeForce GTX TITAN X (CNMeM is disabled)
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>), HostFromGpu(Gp
Looping 1000 times took 1.458473 seconds
Result is [ 1.23178029  1.61879349  1.52278066 ...,  2.20771813  2.29967761
  1.62323296]
Used the gpu

如果我不指定 floatX=float32,它会在 CPU:

上运行
francky@here:/fun$ THEANO_FLAGS='mode=FAST_RUN,device=gpu2'
Using gpu device 2: GeForce GTX TITAN X (CNMeM is disabled)
[Elemwise{exp,no_inplace}(<TensorType(float64, vector)>)]
Looping 1000 times took 3.086261 seconds
Result is [ 1.23178032  1.61879341  1.52278065 ...,  2.20771815  2.29967753
  1.62323285]
Used the cpu

如果我指定 floatX=float64,它会在 CPU:

上运行
francky@here:/fun$ THEANO_FLAGS='mode=FAST_RUN,device=gpu2,floatX=float64' python gpu_test.py
Using gpu device 2: GeForce GTX TITAN X (CNMeM is disabled)
[Elemwise{exp,no_inplace}(<TensorType(float64, vector)>)]
Looping 1000 times took 3.148040 seconds
Result is [ 1.23178032  1.61879341  1.52278065 ...,  2.20771815  2.29967753
  1.62323285]
Used the cpu

为什么 floatX 标志会影响 Theano 中是否使用 GPU?

我使用:

我阅读了 floatX 上的文档,但没有帮助。它只是说:

config.floatX
String value: either ‘float64’ or ‘float32’
Default: ‘float64’

This sets the default dtype returned by tensor.matrix(), tensor.vector(), and similar functions. It also sets the default theano bit width for arguments passed as Python floating-point numbers.

据我所知,这是因为他们还没有为 GPU 实现 float64。

http://deeplearning.net/software/theano/tutorial/using_gpu.html :

Only computations with float32 data-type can be accelerated. Better support for float64 is expected in upcoming hardware but float64 computations are still relatively slow (Jan 2010).

来自 http://deeplearning.net/software/theano/tutorial/using_gpu.html#gpuarray-backend 我读到可以在 GPU 上执行 float64 计算,但是你必须从源代码安装 libgpuarray

我设法安装了它,见 this script, I used virtualenv,你甚至不需要 sudo

安装后,您可以使用带有 config flag device=gpu 的旧后端和带有 device=cuda.

的新后端

新后端可以执行 64 位计算,但对我来说它的工作方式不同。一些操作停止工作。 ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law:)