运行 大约 1 小时后,Spark Streaming 作业被终止

Spark Streaming job get killed after running for about 1 hour

我有一个 spark streaming 作业,它从 gnip 读取推文流并将其写入 Kafak。

Spark 和 kafka 运行 在同一个集群上。

我的集群由 5 个节点组成。 Kafka-b01 ... Kafka-b05

Spark master 运行 在 Kafak-b05 上。

这是我们提交 spark 作业的方式

nohup sh $SPZRK_HOME/bin/spark-submit --total-executor-cores 5 --class com.test.java.gnipStreaming.GnipSparkStreamer --master spark://kafka-b05:7077 GnipStreamContainer.jar powertrack kafka-b01,kafka-b02,kafka-b03,kafka-b04,kafka-b05 gnip_live_stream 2 &

大约 1 小时后,spark 作业被杀死

nohub 文件中的日志显示以下异常

org.apache.spark.storage.BlockFetchException: Failed to fetch block from 2 locations. Most recent failure cause: 
        at org.apache.spark.storage.BlockManager$$anonfun$doGetRemote.apply(BlockManager.scala:595) 
        at org.apache.spark.storage.BlockManager$$anonfun$doGetRemote.apply(BlockManager.scala:585) 
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) 
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) 
        at org.apache.spark.storage.BlockManager.doGetRemote(BlockManager.scala:585) 
        at org.apache.spark.storage.BlockManager.getRemote(BlockManager.scala:570) 
        at org.apache.spark.storage.BlockManager.get(BlockManager.scala:630) 
        at org.apache.spark.rdd.BlockRDD.compute(BlockRDD.scala:48) 
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) 
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) 
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) 
        at org.apache.spark.scheduler.Task.run(Task.scala:89) 
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) 
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) 
        at java.lang.Thread.run(Thread.java:745) 
Caused by: io.netty.channel.ChannelException: Unable to create Channel from class class io.netty.channel.socket.nio.NioSocketChannel 
        at io.netty.bootstrap.AbstractBootstrap$BootstrapChannelFactory.newChannel(AbstractBootstrap.java:455) 
        at io.netty.bootstrap.AbstractBootstrap.initAndRegister(AbstractBootstrap.java:306) 
        at io.netty.bootstrap.Bootstrap.doConnect(Bootstrap.java:134) 
        at io.netty.bootstrap.Bootstrap.connect(Bootstrap.java:116) 
        at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:211) 
        at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:167) 
        at org.apache.spark.network.netty.NettyBlockTransferService$$anon.createAndStart(NettyBlockTransferService.scala:90) 
        at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140) 
        at org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:120) 
        at org.apache.spark.network.netty.NettyBlockTransferService.fetchBlocks(NettyBlockTransferService.scala:99) 
        at org.apache.spark.network.BlockTransferService.fetchBlockSync(BlockTransferService.scala:89) 
        at org.apache.spark.storage.BlockManager$$anonfun$doGetRemote.apply(BlockManager.scala:588) 
        ... 15 more 
Caused by: io.netty.channel.ChannelException: Failed to open a socket. 
        at io.netty.channel.socket.nio.NioSocketChannel.newSocket(NioSocketChannel.java:62) 
        at io.netty.channel.socket.nio.NioSocketChannel.<init>(NioSocketChannel.java:72) 
        at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) 
        at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) 
        at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) 
        at java.lang.reflect.Constructor.newInstance(Constructor.java:423) 
        at java.lang.Class.newInstance(Class.java:442) 
        at io.netty.bootstrap.AbstractBootstrap$BootstrapChannelFactory.newChannel(AbstractBootstrap.java:453) 
        ... 26 more 
Caused by: java.net.SocketException: Too many open files 
        at sun.nio.ch.Net.socket0(Native Method) 
        at sun.nio.ch.Net.socket(Net.java:411) 
        at sun.nio.ch.Net.socket(Net.java:404) 
        at sun.nio.ch.SocketChannelImpl.<init>(SocketChannelImpl.java:105) 
        at sun.nio.ch.SelectorProviderImpl.openSocketChannel(SelectorProviderImpl.java:60) 
        at io.netty.channel.socket.nio.NioSocketChannel.newSocket(NioSocketChannel.java:60) 
        ... 33 more

我已将打开文件的最大数量增加到 3275782(旧数量几乎是这个数量的一半),但我仍然面临同样的问题。

当我从 spark web 界面检查工作人员的 stderr 日志时,我发现了另一个异常。

java.nio.channels.ClosedChannelException 
        at kafka.network.BlockingChannel.send(BlockingChannel.scala:110) 
        at kafka.producer.SyncProducer.liftedTree1(SyncProducer.scala:75) 
        at kafka.producer.SyncProducer.kafka$producer$SyncProducer$$doSend(SyncProducer.scala:74) 
        at kafka.producer.SyncProducer.send(SyncProducer.scala:119) 
        at kafka.client.ClientUtils$.fetchTopicMetadata(ClientUtils.scala:59) 
        at kafka.producer.BrokerPartitionInfo.updateInfo(BrokerPartitionInfo.scala:82) 
        at kafka.producer.BrokerPartitionInfo.getBrokerPartitionInfo(BrokerPartitionInfo.scala:49) 
        at kafka.producer.async.DefaultEventHandler.kafka$producer$async$DefaultEventHandler$$getPartitionListForTopic(DefaultEventHandler.scala:188) 
        at kafka.producer.async.DefaultEventHandler$$anonfun$partitionAndCollate.apply(DefaultEventHandler.scala:152) 
        at kafka.producer.async.DefaultEventHandler$$anonfun$partitionAndCollate.apply(DefaultEventHandler.scala:151) 
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) 
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) 
        at kafka.producer.async.DefaultEventHandler.partitionAndCollate(DefaultEventHandler.scala:151) 
        at kafka.producer.async.DefaultEventHandler.dispatchSerializedData(DefaultEventHandler.scala:96) 
        at kafka.producer.async.DefaultEventHandler.handle(DefaultEventHandler.scala:73) 
        at kafka.producer.Producer.send(Producer.scala:77) 
        at kafka.javaapi.producer.Producer.send(Producer.scala:33) 
        at com.test.java.gnipStreaming.GnipSparkStreamer.call(GnipSparkStreamer.java:59) 
        at com.test.java.gnipStreaming.GnipSparkStreamer.call(GnipSparkStreamer.java:51) 
        at org.apache.spark.api.java.JavaRDDLike$$anonfun$foreachPartition.apply(JavaRDDLike.scala:225) 
        at org.apache.spark.api.java.JavaRDDLike$$anonfun$foreachPartition.apply(JavaRDDLike.scala:225) 
        at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$$anonfun$apply.apply(RDD.scala:920) 
        at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$$anonfun$apply.apply(RDD.scala:920) 
        at org.apache.spark.SparkContext$$anonfun$runJob.apply(SparkContext.scala:1858) 
        at org.apache.spark.SparkContext$$anonfun$runJob.apply(SparkContext.scala:1858) 
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) 
        at org.apache.spark.scheduler.Task.run(Task.scala:89) 
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) 
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) 
        at java.lang.Thread.run(Thread.java:745)

第二个异常(看起来)与 Kafka 有关,而不是 spark。

您认为问题出在哪里?

编辑

根据 Yuval Itzchakov 的评论这是主播的代码

主要classhttp://pastebin.com/EcbnQQ3a

客户收件人classhttp://pastebin.com/3UFPktKR

问题是您在 DStream.foreachPartition 的迭代中实例化 Producer 的新实例。如果您有数据密集型流,这可能会导致分配大量生产者并尝试连接到 Kafka。

我要确保的第一件事是,在使用 finally 块发送完数据并调用 producer.close:[=16= 后,您正确关闭了流]

public Void call(JavaRDD<String> rdd) throws Exception {
    rdd.foreachPartition(new VoidFunction<Iterator<String>>() {

        @Override
        public void call(Iterator<String> itr) throws Exception {
                            try
                            {
               Producer<String, String> producer = getProducer(hosts);
               while(itr.hasNext()) {
                 try {
                    KeyedMessage<String, String> message = 
                        new KeyedMessage<String, String>(topic, itr.next());
                    producer.send(message);
                   } catch (Exception e) {
                    e.printStackTrace();
                   }
               } finally {
                                   producer.close()
                               }
        }
    });
    return null;
}

如果这仍然不起作用并且您看到太多连接,我会为 Kafka 生产者创建一个对象池,您可以按需对其进行池化。这样,您就可以明确控制正在使用的可用生产者数量和打开的套接字数量。