在 R 中填充空的 xts 对象
filling empty xts object in R
我有空的 xts 对象,我想用简单的计算来填充列(预测日期 - xts 索引(日期)/ 365)。我已经能够填写第一个,问题是我有 46 列,将来还会有更多列,所以我这样做的方式不是最佳的。这是我能做的。如何填充其余 4 列(实际示例中为 46 列),而不必像本例中那样合并每一列。
创建空 xts
xts <- xts(order.by=index(xts))
merge(xts, col1 = (dt[1] - index(xts))/365)
col1
2010-12-31 6.512329
2011-01-03 6.504110
2011-01-04 6.501370
2011-01-05 6.498630
2011-01-06 6.495890
2011-01-07 6.493151
最终结果应该是这样的。
col1 col2 col3 col4 col5
2010-12-31 6.512329 6.789041 7.016438 7.153425 7.287671
2011-01-03 6.504110 6.780822 7.008219 7.145205 7.279452
2011-01-04 6.501370 6.778082 7.005479 7.142466 7.276712
2011-01-05 6.498630 6.775342 7.002740 7.139726 7.273973
2011-01-06 6.495890 6.772603 7.000000 7.136986 7.271233
2011-01-07 6.493151 6.769863 6.997260 7.134247 7.268493
这里是带有 5 个预定日期的 dt 变量的数据。
dput(xts)
structure(numeric(0), index = structure(c(1293753600, 1294012800,
1294099200, 1294185600, 1294272000, 1294358400), tzone = "UTC", tclass = "Date"), class = c("xts",
"zoo"), .indexCLASS = "Date", tclass = "Date", .indexTZ = "UTC", tzone = "UTC")
dput(dt)
structure(c(17351L, 17452L, 17535L, 17585L, 17634L), class = "Date")
关键是使用Reduce
合并大列表对象
#Read Data
#main index for first series
mainIndex = as.Date(c("2010-12-31","2011-01-03","2011-01-04","2011-01-05","2011-01-06","2011-01-07"),format="%Y-%m-%d")
referenceDates = as.Date(c("2017-07-04","2017-10-13","2018-01-04","2018-02-23","2018-04-13"),format="%Y-%m-%d")
#Create subsequent xts objects and save as list object
TS_List = lapply(1:length(referenceDates),function(x) {
tsObj =xts((referenceDates[x] - mainIndex)/365,order.by=mainIndex);
colnames(tsObj)=paste0("col",x);
return(tsObj)
})
#General syntax for Reduce : function(x, y) merge(x, y,by="column_column")
#here merge uses merge.xts and common column is index of xts objects
mergeXTSfun = function(x, y) merge(x, y)
merged_TS = Reduce(mergeXTSfun, TS_List )
merged_TS
# col1 col2 col3 col4 col5
#2010-12-31 6.512329 6.789041 7.016438 7.153425 7.287671
#2011-01-03 6.504110 6.780822 7.008219 7.145205 7.279452
#2011-01-04 6.501370 6.778082 7.005479 7.142466 7.276712
#2011-01-05 6.498630 6.775342 7.002740 7.139726 7.273973
#2011-01-06 6.495890 6.772603 7.000000 7.136986 7.271233
#2011-01-07 6.493151 6.769863 6.997260 7.134247 7.268493
DesiredOutput= read.table(text="col1 col2 col3 col4 col5
2010-12-31 6.512329 6.789041 7.016438 7.153425 7.287671
2011-01-03 6.504110 6.780822 7.008219 7.145205 7.279452
2011-01-04 6.501370 6.778082 7.005479 7.142466 7.276712
2011-01-05 6.498630 6.775342 7.002740 7.139726 7.273973
2011-01-06 6.495890 6.772603 7.000000 7.136986 7.271233
2011-01-07 6.493151 6.769863 6.997260 7.134247 7.268493",header=TRUE,stringsAsFactors=FALSE)
DesiredOutput = xts(DesiredOutput,order.by=as.Date(rownames(DesiredOutput),format="%Y-%m-%d"))
all.equal(merged_TS,DesiredOutput)
#[1] "Mean relative difference: 3.67637e-08"
与其创建一堆 xts 对象然后通过 Reduce
递归合并它们,不如直接创建一个 xts 对象。
mat <- sapply(dt, function(d) (d-index(x))/365)
res <- xts(mat, index(x))
colnames(res) <- paste0("col", seq(ncol(res)))
我个人觉得这更直接。
我有空的 xts 对象,我想用简单的计算来填充列(预测日期 - xts 索引(日期)/ 365)。我已经能够填写第一个,问题是我有 46 列,将来还会有更多列,所以我这样做的方式不是最佳的。这是我能做的。如何填充其余 4 列(实际示例中为 46 列),而不必像本例中那样合并每一列。
创建空 xts
xts <- xts(order.by=index(xts))
merge(xts, col1 = (dt[1] - index(xts))/365)
col1
2010-12-31 6.512329
2011-01-03 6.504110
2011-01-04 6.501370
2011-01-05 6.498630
2011-01-06 6.495890
2011-01-07 6.493151
最终结果应该是这样的。
col1 col2 col3 col4 col5
2010-12-31 6.512329 6.789041 7.016438 7.153425 7.287671
2011-01-03 6.504110 6.780822 7.008219 7.145205 7.279452
2011-01-04 6.501370 6.778082 7.005479 7.142466 7.276712
2011-01-05 6.498630 6.775342 7.002740 7.139726 7.273973
2011-01-06 6.495890 6.772603 7.000000 7.136986 7.271233
2011-01-07 6.493151 6.769863 6.997260 7.134247 7.268493
这里是带有 5 个预定日期的 dt 变量的数据。
dput(xts)
structure(numeric(0), index = structure(c(1293753600, 1294012800,
1294099200, 1294185600, 1294272000, 1294358400), tzone = "UTC", tclass = "Date"), class = c("xts",
"zoo"), .indexCLASS = "Date", tclass = "Date", .indexTZ = "UTC", tzone = "UTC")
dput(dt)
structure(c(17351L, 17452L, 17535L, 17585L, 17634L), class = "Date")
关键是使用Reduce
合并大列表对象
#Read Data
#main index for first series
mainIndex = as.Date(c("2010-12-31","2011-01-03","2011-01-04","2011-01-05","2011-01-06","2011-01-07"),format="%Y-%m-%d")
referenceDates = as.Date(c("2017-07-04","2017-10-13","2018-01-04","2018-02-23","2018-04-13"),format="%Y-%m-%d")
#Create subsequent xts objects and save as list object
TS_List = lapply(1:length(referenceDates),function(x) {
tsObj =xts((referenceDates[x] - mainIndex)/365,order.by=mainIndex);
colnames(tsObj)=paste0("col",x);
return(tsObj)
})
#General syntax for Reduce : function(x, y) merge(x, y,by="column_column")
#here merge uses merge.xts and common column is index of xts objects
mergeXTSfun = function(x, y) merge(x, y)
merged_TS = Reduce(mergeXTSfun, TS_List )
merged_TS
# col1 col2 col3 col4 col5
#2010-12-31 6.512329 6.789041 7.016438 7.153425 7.287671
#2011-01-03 6.504110 6.780822 7.008219 7.145205 7.279452
#2011-01-04 6.501370 6.778082 7.005479 7.142466 7.276712
#2011-01-05 6.498630 6.775342 7.002740 7.139726 7.273973
#2011-01-06 6.495890 6.772603 7.000000 7.136986 7.271233
#2011-01-07 6.493151 6.769863 6.997260 7.134247 7.268493
DesiredOutput= read.table(text="col1 col2 col3 col4 col5
2010-12-31 6.512329 6.789041 7.016438 7.153425 7.287671
2011-01-03 6.504110 6.780822 7.008219 7.145205 7.279452
2011-01-04 6.501370 6.778082 7.005479 7.142466 7.276712
2011-01-05 6.498630 6.775342 7.002740 7.139726 7.273973
2011-01-06 6.495890 6.772603 7.000000 7.136986 7.271233
2011-01-07 6.493151 6.769863 6.997260 7.134247 7.268493",header=TRUE,stringsAsFactors=FALSE)
DesiredOutput = xts(DesiredOutput,order.by=as.Date(rownames(DesiredOutput),format="%Y-%m-%d"))
all.equal(merged_TS,DesiredOutput)
#[1] "Mean relative difference: 3.67637e-08"
与其创建一堆 xts 对象然后通过 Reduce
递归合并它们,不如直接创建一个 xts 对象。
mat <- sapply(dt, function(d) (d-index(x))/365)
res <- xts(mat, index(x))
colnames(res) <- paste0("col", seq(ncol(res)))
我个人觉得这更直接。