theano 和 lambda 函数

theano and lambda functions

当我有一个评估 theano 表达式的 lambda 函数列表时,我遇到了一些奇怪的行为。代码如下:

# Equivalent functions (or at least I assume so)
def tilted_loss(q,y,f):
    e = (y-f)
    return (q*tt.sum(e)-tt.sum(e[(e<0).nonzero()]))/e.shape[0]

def tilted_loss2(y,f):
    q = 0.05
    e = (y-f)
    return (q*tt.sum(e)-tt.sum(e[(e<0).nonzero()]))/e.shape[0]

def tilted_loss_np(q,y,f):
    e = (y-f)
    return (q*sum(e)-sum(e[e<0]))/e.shape[0]

# lambda functions which uses above functions
qs = np.arange(0.05,1,0.05)
q_loss_f = [lambda y,f: tilted_loss(q,y,f) for q in qs]
q_loss_f2 = lambda y,f:tilted_loss(0.05,y,f)
q_loss_f3 = lambda y,f:tilted_loss(qs[0],y,f)

# Test the functions
np.random.seed(1)
a = np.random.randn(1000,1)
b = np.random.randn(1000,1)
print(q_loss_f[0](a,b).eval())
print(q_loss_f2(a,b).eval())
print(q_loss_f3(a,b).eval())
print(tilted_loss2(a,b).eval())
print(tilted_loss_np(qs[0],a,b)[0])

这给出了输出:

0.571973847658054
0.5616355181780912
0.5616355181695327
0.5616355181780912
0.56163551817
  1. 我一定是函数列表 q_loss_f 的定义方式有问题。
  2. q的定义方式可以吗?即它是我发送的一个 numpy 变量,但这在 q_loss_f3.
  3. 中似乎没问题

有什么想法吗?

是一个常见的错误,lambda 表达式中的 q 值只会从推导循环中取最后一个值,你最好使用 partial:

q_loss_f = [partial(tilted_loss, q=q) for q in qs]