PySpark 条件增量

PySpark conditional increment

我是 PySpark 的新手,我正在尝试转换一些 python 派生新变量 'COUNT_IDX' 的代码。新变量的初始值为 1,但在满足条件时递增 1。否则,新变量值将与上一条记录中的值相同。

增加的条件是: TRIP_CD不等于上一条记录TRIP_CD SIGN不等于上一条记录SIGN time_diff不等于1.

Python 代码(pandas 数据帧):

df['COUNT_IDX'] = 1

for i in range(1, len(df)):
    if ((df['TRIP_CD'].iloc[i] != df['TRIP_CD'].iloc[i - 1])
          or (df['SIGN'].iloc[i] != df['SIGN'].iloc[i-1])
          or df['time_diff'].iloc[i] != 1):
        df['COUNT_IDX'].iloc[i] = df['COUNT_IDX'].iloc[i-1] + 1
    else:
        df['COUNT_IDX'].iloc[i] = df['COUNT_IDX'].iloc[i-1]

这是预期的结果:

TRIP_CD   SIGN   time_diff  COUNT_IDX
2711      -      1          1
2711      -      1          1
2711      +      2          2
2711      -      1          3
2711      -      1          3
2854      -      1          4
2854      +      1          5

在 PySpark 中,我将 COUNT_IDX 初始化为 1。然后使用 Window 函数,我计算了 TRIP_CD 和 SIGN 的滞后并计算了 time_diff,然后尝试过:

df = sqlContext.sql('''
   select TRIP, TRIP_CD, SIGN, TIME_STAMP, seconds_diff,
   case when TRIP_CD != TRIP_lag or SIGN != SIGN_lag  or  seconds_diff != 1 
        then (lag(COUNT_INDEX) over(partition by TRIP order by TRIP, TIME_STAMP))+1
        else (lag(COUNT_INDEX) over(partition by TRIP order by TRIP, TIME_STAMP)) 
        end as COUNT_INDEX from df''')

这给了我这样的东西:

TRIP_CD   SIGN   time_diff  COUNT_IDX
2711      -      1          1
2711      -      1          1
2711      +      2          2
2711      -      1          2
2711      -      1          1
2854      -      1          2
2854      +      1          2

如果 COUNT_IDX 在以前的记录上更新,则当前记录上的 COUNT_IDX 无法识别要计算的更改。这就像 COUNTI_IDX 没有被覆盖或者没有逐行评估。关于如何解决这个问题的任何想法?

此处需要累计金额:

-- cumulative sum
SUM(CAST(  
  -- if at least one condition has been satisfied
  -- we take 1 otherwise 0
  TRIP_CD != TRIP_lag OR SIGN != SIGN_lag OR seconds_diff != 1 AS LONG
)) OVER W
...
WINDOW W AS (PARTITION BY trip ORDER BY times_stamp)