在 R 中做 pivot table 的另一种方法

Another way to do pivot table in R

我有如下数据集:

> head(worldcup)
               Team   Position Time Shots Passes Tackles Saves
Abdoun      Algeria Midfielder   16     0      6       0     0
Abe           Japan Midfielder  351     0    101      14     0
Abidal       France   Defender  180     0     91       6     0
Abou Diaby   France Midfielder  270     1    111       5     0
Aboubakar  Cameroon    Forward   46     2     16       0     0
Abreu       Uruguay    Forward   72     0     15       0     0

然后就是某些变量的码数均值:

wc_3 <- worldcup %>% 
  select(Time, Passes, Tackles, Saves) %>%
  summarize(Time = mean(Time),
            Passes = mean(Passes),
            Tackles = mean(Tackles),
            Saves = mean(Saves))

输出为:

> wc_3
      Time   Passes  Tackles     Saves
1 208.8639 84.52101 4.191597 0.6672269

然后我需要执行如下输出:

      var           mean
     Time    208.8638655
   Passes     84.5210084
  Tackles      4.1915966
    Saves      0.6672269

我试过这样做:

wc_3 <- worldcup %>% 
  select(Time, Passes, Tackles, Saves) %>%
  summarize(Time = mean(Time),
            Passes = mean(Passes),
            Tackles = mean(Tackles),
            Saves = mean(Saves)) %>%
  gather(var, mean, Time:Saves, factor_key=TRUE)

输出相同。我的问题:有没有办法用不同的方式执行相同的输出?

这是我的课程,但我的提交被拒绝了。我不知道为什么,但我问过这个。

请指教

一个选项是先 gather,然后按 'Var' 和 summarise 分组以获得 'Val'

mean
library(dplyr)
library(tidyr)
worldcup %>% 
       gather(Var, Val, Time:Saves) %>% 
       filter(Var!= "Shots") %>%
       group_by(Var) %>% 
       summarise(Mean = mean(Val))

另一种选择是转置输出 wc_3,如下所示:

result <- as.data.frame(t(w_c))

设置您的 "mean" 变量的名称:

names(result)[1] <- "mean"

wc_3 中的列名已成为 'result' 中的行名,因此我们需要将它们作为列 "var":

的值

result$var <- rownames(result)

将我们的 'result' table 中的行名设置为 NULL:

rownames(result) <- NULL

交换列的顺序:

result <- result[,c(2,1)]