二叉树最大路径和,非递归,超过时间限制
Binary Tree Maximum Path Sum, non-recursive, Time Limit Exceeded
我正在努力解决这个问题,我想以非递归的方式解决这个问题。我的算法似乎没有逻辑错误,73% 的测试用例通过了。但它无法处理大数据,报告 "Time Limit Exceeded"。如果有人能给我一些提示,如何以非递归方式执行此操作并避免超过时间限制,我将不胜感激,在此先感谢!
问题Link
I believe there's also a similar one in LeetCode.
http://www.lintcode.com/en/problem/binary-tree-maximum-path-sum-ii/
问题描述:
Given a binary tree, find the maximum path sum from root.
The path may end at any node in the tree and contain at least one node in it.
示例:
Given the below binary tree:
1
/ \
2 3
return 4. (1->3)
法官
Time Limit Exceeded
Total Runtime: 1030 ms
输入
输入数据
{-790,-726,970,696,-266,-545,830,-866,669,-488,-122,260,116,521,-866,-480,-573,-926,88,733,#,#,483,-935,-285,-258,892,180,279,-935,675,2,596,5,50,830,-607,-212,663,25,-840,#,#,-333,754,#,817,842,-220,-269,9,-862,-78,-473,643,536,-142,773,485,262,360,702,-661,244,-96,#,519,566,-893,-599,126,-314,160,358,159,#,#,-237,-522,-327,310,-506,462,-705,868,-782,300,-945,-3,139,-193,-205,-92,795,-99,-983,-658,-114,-706,987,292,#,234,-406,-993,-863,859,875,383,-729,-748,-258,329,431,-188,-375,-696,-856,825,-154,-398,-917,-70,105,819,-264,993,207,21,-102,50,569,-824,-604,895,-564,-361,110,-965,-11,557,#,202,213,-141,759,214,207,135,329,15,#,#,244,#,334,628,509,627,-737,-33,-339,-985,349,267,-505,-527,882,-352,-357,-630,782,-215,-555,132,-835,-421,751,0,-792,-575,-615,-690,718,248,882,-606,-53,157,750,862,#,940,160,47,-347,-101,-947,739,894,#,-658,-90,-277,-925,997,862,-481,-83,708,706,686,-542,485,517,-922,978,-464,-923,710,-691,168,-607,-888,-439,499,794,-601,435,-114,-337,422,#,-855,-859,163,-224,902,#,577,#,-386,272,-9 ...
预期
6678
我的代码
C++
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root the root of binary tree.
* @return an integer
*/
int maxPathSum2(TreeNode *root) {
if (root == NULL) return 0;
findLeaf(root);
return global_max;
}
private:
int global_max = INT_MIN;
void findLeaf(TreeNode* root) {
unordered_map<TreeNode*, TreeNode*> parent;
stack<TreeNode*> traverse;
parent[root] = NULL;
traverse.push(root);
while(!traverse.empty()) {
TreeNode* p = traverse.top();
traverse.pop();
if (!p->left && !p->right) {
findPathMaxSum(p, parent);
}
if (p->right) {
parent[p->right] = p;
traverse.push(p->right);
}
if (p->left) {
parent[p->left] = p;
traverse.push(p->left);
}
}
}
void findPathMaxSum(TreeNode* leaf, unordered_map<TreeNode*, TreeNode*> parent) {
TreeNode* current = leaf;
stack<TreeNode*> stk;
int path_max = INT_MIN;
int path_sum = 0;
while (current) {
stk.push(current);
current = parent[current];
}
while (!stk.empty()) {
current = stk.top();
stk.pop();
path_sum += current->val;
path_max = path_max > path_sum ? path_max : path_sum;
}
global_max = global_max > path_max ? global_max : path_max;
}
};
已解决
我接受@Dave Galvin 的建议并且它有效!这是代码:
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root the root of binary tree.
* @return an integer
*/
int maxPathSum2(TreeNode *root) {
if (root == NULL) return 0;
int global_max = INT_MIN;
stack<TreeNode*> traverse;
traverse.push(root);
while(!traverse.empty()) {
TreeNode* p = traverse.top();
global_max = global_max > p->val ? global_max : p->val;
traverse.pop();
if (p->right) {
traverse.push(p->right);
p->right->val += p->val;
}
if (p->left) {
traverse.push(p->left);
p->left->val += p->val;
}
}
return global_max;
}
};
已编辑:
您不需要 findPathMaxSum 函数。我还更改了 parent 映射。现在它存储 2 个值:
- 指向父节点的指针
- 从根到当前节点的路径总和。
这是代码。
class Solution {
public:
/**
* @param root the root of binary tree.
* @return an integer
*/
int maxPathSum2(TreeNode *root) {
if (root == NULL) return 0;
findLeaf(root);
return global_max;
}
private:
int global_max = INT_MIN;
void findLeaf(TreeNode* root) {
unordered_map<TreeNode*, std::pair<TreeNode*,int> > parent;
stack<TreeNode*> traverse;
parent[root] = make_pair(NULL,root->val);
traverse.push(root);
while(!traverse.empty()) {
TreeNode* p = traverse.top();
traverse.pop();
if (!p->left && !p->right) {
// findPathMaxSum(p, parent);
global_max=std::max(global_max,parent[p].second);
}
if (p->right) {
parent[p->right] = make_pair(p, (p->right->val) +parent[p].second) ;
traverse.push(p->right);
}
if (p->left) {
parent[p->left] = make_pair(p, (p->left->val) +parent[p].second) ;
traverse.push(p->left);
}
}
};
旧:
您想在 findPathMaxSum.
中通过 引用而不是值 传递地图
void findPathMaxSum(TreeNode* leaf, unordered_map<TreeNode*, TreeNode*> parent)
改成。
void findPathMaxSum(TreeNode* leaf, unordered_map<TreeNode*, TreeNode*>& parent)
它使你的时间复杂度为 O(n*n)。
它的运行复杂度会变成O(n*log n)。虽然它没有成功,因为你的约束更严格。所以我在上面贴了一个O(n)的解决方案。
从上到下,通过添加父节点的值来更新每个节点。跟踪您的最大值及其位置。 Return 最后。 O(n).
例如,如果您的二叉树是 T=[-4,2,6,-5,2,1,5],那么我们将其更新为:
[-4, 2-4=-2, 6-4=2, -2-5 = -7, -2+2=4, 2+3=3, 2+5=7]
这里的答案是 7,接下来是 -4、6、5。
我猜你的代码的问题在于,当你遍历你的树时,你在每个节点中迭代以计算最大路径。最终复杂度为 O(n^2)
。您需要计算流上的最大路径(在遍历树时)。
在下面的解决方案中,我使用了 here 中的 post 阶迭代算法。请原谅我用这个代替你的。
解决方法(O(n)
)就是简单的给每个节点加一个字段max_path
,当访问时实际节点取left
和 right
:
void postOrderTraversalIterative(BinaryTree *root) {
if (!root) return;
stack<BinaryTree*> s;
s.push(root);
BinaryTree *prev = NULL;
while (!s.empty()) {
BinaryTree *curr = s.top();
if (!prev || prev->left == curr || prev->right == curr) {
if (curr->left)
s.push(curr->left);
else if (curr->right)
s.push(curr->right);
} else if (curr->left == prev) {
if (curr->right)
s.push(curr->right);
} else {
//Visiting the node, calculate max for curr
if (curr->left == NULL && curr->right==NULL)
curr->max_path = curr->data;
else if (curr->left == NULL)
curr->max_path = curr->right->max_path + curr->data;
else if (curr->right == NULL)
curr->max_path = curr->left->max_path + curr->data;
else //take max of left and right
curr->max_path = max(curr->left->max_path, curr->right->max_path) + curr->data;
s.pop();
}
prev = curr;
}
}
我正在努力解决这个问题,我想以非递归的方式解决这个问题。我的算法似乎没有逻辑错误,73% 的测试用例通过了。但它无法处理大数据,报告 "Time Limit Exceeded"。如果有人能给我一些提示,如何以非递归方式执行此操作并避免超过时间限制,我将不胜感激,在此先感谢!
问题Link
I believe there's also a similar one in LeetCode.
http://www.lintcode.com/en/problem/binary-tree-maximum-path-sum-ii/
问题描述:
Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree and contain at least one node in it.
示例:
Given the below binary tree:
1
/ \
2 3
return 4. (1->3)
法官
Time Limit Exceeded
Total Runtime: 1030 ms
输入 输入数据
{-790,-726,970,696,-266,-545,830,-866,669,-488,-122,260,116,521,-866,-480,-573,-926,88,733,#,#,483,-935,-285,-258,892,180,279,-935,675,2,596,5,50,830,-607,-212,663,25,-840,#,#,-333,754,#,817,842,-220,-269,9,-862,-78,-473,643,536,-142,773,485,262,360,702,-661,244,-96,#,519,566,-893,-599,126,-314,160,358,159,#,#,-237,-522,-327,310,-506,462,-705,868,-782,300,-945,-3,139,-193,-205,-92,795,-99,-983,-658,-114,-706,987,292,#,234,-406,-993,-863,859,875,383,-729,-748,-258,329,431,-188,-375,-696,-856,825,-154,-398,-917,-70,105,819,-264,993,207,21,-102,50,569,-824,-604,895,-564,-361,110,-965,-11,557,#,202,213,-141,759,214,207,135,329,15,#,#,244,#,334,628,509,627,-737,-33,-339,-985,349,267,-505,-527,882,-352,-357,-630,782,-215,-555,132,-835,-421,751,0,-792,-575,-615,-690,718,248,882,-606,-53,157,750,862,#,940,160,47,-347,-101,-947,739,894,#,-658,-90,-277,-925,997,862,-481,-83,708,706,686,-542,485,517,-922,978,-464,-923,710,-691,168,-607,-888,-439,499,794,-601,435,-114,-337,422,#,-855,-859,163,-224,902,#,577,#,-386,272,-9 ...
预期
6678
我的代码 C++
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root the root of binary tree.
* @return an integer
*/
int maxPathSum2(TreeNode *root) {
if (root == NULL) return 0;
findLeaf(root);
return global_max;
}
private:
int global_max = INT_MIN;
void findLeaf(TreeNode* root) {
unordered_map<TreeNode*, TreeNode*> parent;
stack<TreeNode*> traverse;
parent[root] = NULL;
traverse.push(root);
while(!traverse.empty()) {
TreeNode* p = traverse.top();
traverse.pop();
if (!p->left && !p->right) {
findPathMaxSum(p, parent);
}
if (p->right) {
parent[p->right] = p;
traverse.push(p->right);
}
if (p->left) {
parent[p->left] = p;
traverse.push(p->left);
}
}
}
void findPathMaxSum(TreeNode* leaf, unordered_map<TreeNode*, TreeNode*> parent) {
TreeNode* current = leaf;
stack<TreeNode*> stk;
int path_max = INT_MIN;
int path_sum = 0;
while (current) {
stk.push(current);
current = parent[current];
}
while (!stk.empty()) {
current = stk.top();
stk.pop();
path_sum += current->val;
path_max = path_max > path_sum ? path_max : path_sum;
}
global_max = global_max > path_max ? global_max : path_max;
}
};
已解决
我接受@Dave Galvin 的建议并且它有效!这是代码:
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root the root of binary tree.
* @return an integer
*/
int maxPathSum2(TreeNode *root) {
if (root == NULL) return 0;
int global_max = INT_MIN;
stack<TreeNode*> traverse;
traverse.push(root);
while(!traverse.empty()) {
TreeNode* p = traverse.top();
global_max = global_max > p->val ? global_max : p->val;
traverse.pop();
if (p->right) {
traverse.push(p->right);
p->right->val += p->val;
}
if (p->left) {
traverse.push(p->left);
p->left->val += p->val;
}
}
return global_max;
}
};
已编辑:
您不需要 findPathMaxSum 函数。我还更改了 parent 映射。现在它存储 2 个值:
- 指向父节点的指针
- 从根到当前节点的路径总和。
这是代码。
class Solution {
public:
/**
* @param root the root of binary tree.
* @return an integer
*/
int maxPathSum2(TreeNode *root) {
if (root == NULL) return 0;
findLeaf(root);
return global_max;
}
private:
int global_max = INT_MIN;
void findLeaf(TreeNode* root) {
unordered_map<TreeNode*, std::pair<TreeNode*,int> > parent;
stack<TreeNode*> traverse;
parent[root] = make_pair(NULL,root->val);
traverse.push(root);
while(!traverse.empty()) {
TreeNode* p = traverse.top();
traverse.pop();
if (!p->left && !p->right) {
// findPathMaxSum(p, parent);
global_max=std::max(global_max,parent[p].second);
}
if (p->right) {
parent[p->right] = make_pair(p, (p->right->val) +parent[p].second) ;
traverse.push(p->right);
}
if (p->left) {
parent[p->left] = make_pair(p, (p->left->val) +parent[p].second) ;
traverse.push(p->left);
}
}
};
旧:
您想在 findPathMaxSum.
中通过 引用而不是值 传递地图void findPathMaxSum(TreeNode* leaf, unordered_map<TreeNode*, TreeNode*> parent)
改成。
void findPathMaxSum(TreeNode* leaf, unordered_map<TreeNode*, TreeNode*>& parent)
它使你的时间复杂度为 O(n*n)。
它的运行复杂度会变成O(n*log n)。虽然它没有成功,因为你的约束更严格。所以我在上面贴了一个O(n)的解决方案。
从上到下,通过添加父节点的值来更新每个节点。跟踪您的最大值及其位置。 Return 最后。 O(n).
例如,如果您的二叉树是 T=[-4,2,6,-5,2,1,5],那么我们将其更新为: [-4, 2-4=-2, 6-4=2, -2-5 = -7, -2+2=4, 2+3=3, 2+5=7]
这里的答案是 7,接下来是 -4、6、5。
我猜你的代码的问题在于,当你遍历你的树时,你在每个节点中迭代以计算最大路径。最终复杂度为 O(n^2)
。您需要计算流上的最大路径(在遍历树时)。
在下面的解决方案中,我使用了 here 中的 post 阶迭代算法。请原谅我用这个代替你的。
解决方法(O(n)
)就是简单的给每个节点加一个字段max_path
,当访问时实际节点取left
和 right
:
void postOrderTraversalIterative(BinaryTree *root) {
if (!root) return;
stack<BinaryTree*> s;
s.push(root);
BinaryTree *prev = NULL;
while (!s.empty()) {
BinaryTree *curr = s.top();
if (!prev || prev->left == curr || prev->right == curr) {
if (curr->left)
s.push(curr->left);
else if (curr->right)
s.push(curr->right);
} else if (curr->left == prev) {
if (curr->right)
s.push(curr->right);
} else {
//Visiting the node, calculate max for curr
if (curr->left == NULL && curr->right==NULL)
curr->max_path = curr->data;
else if (curr->left == NULL)
curr->max_path = curr->right->max_path + curr->data;
else if (curr->right == NULL)
curr->max_path = curr->left->max_path + curr->data;
else //take max of left and right
curr->max_path = max(curr->left->max_path, curr->right->max_path) + curr->data;
s.pop();
}
prev = curr;
}
}