Spark 作业与 Google Dataproc 不兼容

Spark job became incompatible with Google Dataproc

我的这段代码几个月来都运行良好,大约 2 个月前停止使用 Google Dataproc,尽管我没有更改任何一行。

我可以用几行代码重现这个错误,所以我不需要 post 一大块代码:

SparkConf sparkConf = new SparkConf().setAppName("test");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);

JavaRDD<String> rdd = jsc.parallelize(Arrays.asList("a", "b", "c"));
JavaPairRDD<String, String> pairs = rdd.flatMapToPair(value ->
        Arrays.asList(
                new Tuple2<>(value, value + "1"), 
                new Tuple2<>(value, value + "2")
        )
);
pairs.collect().forEach(System.out::println);

然后我得到这个晦涩的异常:

WARN org.apache.spark.scheduler.TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, test-cluster-w-1.c.test-project.internal): java.lang.AbstractMethodError: uk.co.test.CalculateScore$$Lambda/1666820030.call(Ljava/lang/Object;)Ljava/util/Iterator;
        at org.apache.spark.api.java.JavaRDDLike$$anonfun$fn.apply(JavaRDDLike.scala:142)
        at org.apache.spark.api.java.JavaRDDLike$$anonfun$fn.apply(JavaRDDLike.scala:142)
        at scala.collection.Iterator$$anon.nextCur(Iterator.scala:434)
        at scala.collection.Iterator$$anon.hasNext(Iterator.scala:440)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at scala.collection.AbstractIterator.to(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
        at org.apache.spark.rdd.RDD$$anonfun$collect$$anonfun.apply(RDD.scala:893)
        at org.apache.spark.rdd.RDD$$anonfun$collect$$anonfun.apply(RDD.scala:893)
        at org.apache.spark.SparkContext$$anonfun$runJob.apply(SparkContext.scala:1897)
        at org.apache.spark.SparkContext$$anonfun$runJob.apply(SparkContext.scala:1897)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
        at org.apache.spark.scheduler.Task.run(Task.scala:85)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 7, test-cluster-w-0.c.test-project.internal): ExecutorLostFailure (executor 2 exited caused by one of the running tasks) Reason: Container marked as failed: container_1475077182957_0001_01_000005 on host: sun-recommendations-evaluation-w-0.c.test-project.internal. Exit status: 50. Diagnostics: Exception from container-launch.
Container id: container_1475077182957_0001_01_000005
Exit code: 50
Stack trace: ExitCodeException exitCode=50:
        at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
        at org.apache.hadoop.util.Shell.run(Shell.java:456)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
        at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)


Container exited with a non-zero exit code 50

Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1438)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1437)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:811)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:811)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
        at org.apache.spark.util.EventLoop$$anon.run(EventLoop.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1897)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1911)
        at org.apache.spark.rdd.RDD$$anonfun$collect.apply(RDD.scala:893)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
        at org.apache.spark.rdd.RDD.collect(RDD.scala:892)
        at org.apache.spark.api.java.JavaRDDLike$class.collect(JavaRDDLike.scala:360)
        at org.apache.spark.api.java.AbstractJavaRDDLike.collect(JavaRDDLike.scala:45)
        at uk.co.test.CalculateScore.main(CalculateScore.java:50)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:729)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain(SparkSubmit.scala:185)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

如果我 运行 在本地使用:

sparkConf.setMaster("local[2]")

然后它工作正常并输出:

(a,a1)
(a,a2)
(b,b1)
(b,b2)
(c,c1)
(c,c2)

这些是我的 Spark 依赖项:

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.10</artifactId>
        <version>1.6.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-mllib_2.10</artifactId>
        <version>1.6.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_2.10</artifactId>
        <version>1.6.0</version>
    </dependency>

感谢任何帮助。

Dataproc 使用的默认映像最近已升级到 Spark 2.0 / Scala 2.11。这在 8 月发生了变化,可能可以解释这种差异。

This page 详细说明每个 Dataproc 映像版本中包含哪些版本的软件包。

使用以下内容更新您的 pom.xml 可能就足够了,重新编译并重新 运行 您的应用程序

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.0.0</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-mllib_2.11</artifactId>
    <version>2.0.0</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.11</artifactId>
    <version>2.0.0</version>
</dependency>

Spark 1.6 和 2.0 之间的 release notes for Spark 2.0 contain changes and removals

作为替代方案,您仍然可以通过以下 gcloud 调用来使用 1.0 图像轨道:

$ gcloud dataproc clusters create --image-version 1.0 ...

使用显式图像轨道时,请记住 major/minor 版本可能会被弃用并最终被删除。可以参考 Dataproc image versioning 政策来了解图像版本的支持时间表。