合并两个数据框但列值不同

Merging two dataframes but different column values

抱歉,我是 R 的新手,非常感谢对此的帮助。我正在尝试根据时间合并以下两个数据框(labourproductivity 和 Depressiondframe):

Time            LabourProductivity
1 2004 Q1   96.6
2      Q2   96.9
3      Q3   96.9
4      Q4   97.1
5 2005 Q1   97.6
6      Q2   99.0

Time    DepressionCount
1 2004          875
2 2004.25   820
3 2004.5    785
4 2004.75   857
5 2005          844
6 2005.25   841

因为它们都有不同的时间值,所以我不知道如何合并它们。理想情况下它看起来像:

Time    DepressionCount LabourProductivity
1 2004  875             96.6
2 2004  820             96.9
3 2004  785             96.9
4 2004  857             97.1
5 2005  844             97.6
6 2005  841             99.0

如果"df1"和"df2"是第一个和第二个数据集,则根据[=27=的"Time"列创建分组索引("indx") ].使用 aveas.yearqtr

将 "Time" 列转换为与 "df2" 类似的格式
library(zoo)
indx <-  cumsum(grepl('^\d+', df1$Time))
df1$Time <- with(df1, as.numeric(ave(Time, indx, FUN= function(x)  {
        x[-1] <- paste (sub(' .*', '', x[1]), x[-1])
        as.yearqtr(x) })))

merge 数据集,transform "Time" 列(如果需要)

transform(merge(df1, df2), Time=trunc(Time))
#    Time LabourProductivity DepressionCount
#1 2004               96.6             875
#2 2004               96.9             820
#3 2004               96.9             785
#4 2004               97.1             857
#5 2005               97.6             844
#6 2005               99.0             841

或使用data.table

library(data.table)
 setDT(df1)[, TimeN:= as.numeric(as.yearqtr(c(Time[1L],
    paste(sub(' .*', '', Time[1L]), Time[-1L])))), 
      list(Grp=cumsum(grepl('^\d+', Time)))][,
            Time:= TimeN][, TimeN:=NULL][]

 setkey(df1, Time)[df2][, Time:=trunc(Time)][]
 #   Time LabourProductivity DepressionCount
 #1: 2004               96.6             875
 #2: 2004               96.9             820
 #3: 2004               96.9             785
 #4: 2004               97.1             857
 #5: 2005               97.6             844
 #6: 2005               99.0             841

数据

df1 <- structure(list(Time = c("2004 Q1", "Q2", "Q3", "Q4", "2005 Q1", 
"Q2"), LabourProductivity = c(96.6, 96.9, 96.9, 97.1, 97.6, 99
)), .Names = c("Time", "LabourProductivity"), class = "data.frame", 
row.names = c("1", "2", "3", "4", "5", "6"))

df2 <- structure(list(Time = c(2004, 2004.25, 2004.5, 2004.75, 2005, 
2005.25), DepressionCount = c(875L, 820L, 785L, 857L, 844L, 841L
 )), .Names = c("Time", "DepressionCount"), class = "data.frame", 
 row.names = c("1", "2", "3", "4", "5", "6"))