Spark MLlib:包括分类特征

Spark MLlib: Including categorical features

将分类变量(字符串和整数)包含到 MLlib 算法的特征中的正确或最佳方法是什么?

在分类变量上使用 OneHotEncoder,然后将输出列与其他列一起包含在 VectorAssembler 中是否正确,如下面的代码所示?

原因是我最终得到一个数据框,其中包含这样的行,看起来 feature3feature4 组合起来看起来它们具有相同的 'level' 重要性单独作为两个分类特征。

+------------------+-----------------------+---------------------------+
|prediction        |actualVal |features                                |
+------------------+-----------------------+---------------------------+
|355416.44924898935|990000.0  |(17,[0,1,2,3,4,5,10,15],[1.0,206.0])    |
|358917.32988024893|210000.0  |(17,[0,1,2,3,4,5,10,15,16],[1.0,172.0]) |
|291313.84175674635|4600000.0 |(17,[0,1,2,3,4,5,12,15,16],[1.0,239.0]) |

这是我的代码:

val indexer = new StringIndexer()
  .setInputCol("stringFeatureCode")
  .setOutputCol("stringFeatureCodeIndex")
  .fit(data)
val indexed = indexer.transform(data)

val encoder = new OneHotEncoder()
  .setInputCol("stringFeatureCodeIndex")
  .setOutputCol("stringFeatureCodeVec")

var encoded = encoder.transform(indexed)

encoded = encoded.withColumn("intFeatureCodeTmp", encoded.col("intFeatureCode")
  .cast(DoubleType))
  .drop("intFeatureCode")
  .withColumnRenamed("intFeatureCodeTmp", "intFeatureCode")

val intFeatureCodeEncoder = new OneHotEncoder()
  .setInputCol("intFeatureCode")
  .setOutputCol("intFeatureCodeVec")

encoded = intFeatureCodeEncoder.transform(encoded)

val assemblerDeparture =
  new VectorAssembler()
    .setInputCols(
      Array("stringFeatureCodeVec", "intFeatureCodeVec", "feature3", "feature4"))
    .setOutputCol("features")
var data2 = assemblerDeparture.transform(encoded)

val Array(trainingData, testData) = data2.randomSplit(Array(0.7, 0.3))

val rf = new RandomForestRegressor()
  .setLabelCol("actualVal")
  .setFeaturesCol("features")
  .setNumTrees(100)
  • 一般来说这是推荐的方法。
  • 当工作树建模时,它是不必要的,应该避免。您只能使用 StringIndexer