如何对 pandas DataFrame 中的连续值进行分组
How to groupby consecutive values in pandas DataFrame
我在 DataFrame 中有一列的值为:
[1, 1, -1, 1, -1, -1]
我怎样才能像这样对它们进行分组?
[1,1] [-1] [1] [-1, -1]
您可以自定义使用groupby
Series
:
df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
print (df)
a
0 1
1 1
2 -1
3 1
4 -1
5 -1
print ((df.a != df.a.shift()).cumsum())
0 1
1 1
2 2
3 3
4 4
5 4
Name: a, dtype: int32
for i, g in df.groupby([(df.a != df.a.shift()).cumsum()]):
print (i)
print (g)
print (g.a.tolist())
a
0 1
1 1
[1, 1]
2
a
2 -1
[-1]
3
a
3 1
[1]
4
a
4 -1
5 -1
[-1, -1]
使用 Jez
的 itertools
数据中的 groupby
from itertools import groupby
[ list(group) for key, group in groupby(df.a.values.tolist())]
Out[361]: [[1, 1], [-1], [1], [-1, -1]]
Series.diff
是另一种标记组边界的方式(a!=a.shift
表示a.diff!=0
):
consecutives = df['a'].diff().ne(0).cumsum()
# 0 1
# 1 1
# 2 2
# 3 3
# 4 4
# 5 4
# Name: a, dtype: int64
并将这些组转换为一系列列表(请参阅列表列表的其他答案),聚合 groupby.agg
or groupby.apply
:
df['a'].groupby(consecutives).agg(list)
# a
# 1 [1, 1]
# 2 [-1]
# 3 [1]
# 4 [-1, -1]
# Name: a, dtype: object
如果您正在处理字符串值:
s = pd.DataFrame(['A','A','A','BB','BB','CC','A','A','BB'], columns=['a'])
string_groups = sum([['%s_%s' % (i,n) for i in g] for n,(k,g) in enumerate(itertools.groupby(s.a))],[])
>>> string_groups
['A_0', 'A_0', 'A_0', 'BB_1', 'BB_1', 'CC_2', 'A_3', 'A_3', 'BB_4']
grouped = s.groupby(string_groups, sort=False).agg(list)
grouped.index = grouped.index.str.split('_').str[0]
>>> grouped
a
A [A, A, A]
BB [BB, BB]
CC [CC]
A [A, A]
BB [BB]
作为一个单独的函数:
def groupby_consec(df, col):
string_groups = sum([['%s_%s' % (i, n) for i in g]
for n, (k, g) in enumerate(itertools.groupby(df[col]))], [])
return df.groupby(string_groups, sort=False)
我在 DataFrame 中有一列的值为:
[1, 1, -1, 1, -1, -1]
我怎样才能像这样对它们进行分组?
[1,1] [-1] [1] [-1, -1]
您可以自定义使用groupby
Series
:
df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
print (df)
a
0 1
1 1
2 -1
3 1
4 -1
5 -1
print ((df.a != df.a.shift()).cumsum())
0 1
1 1
2 2
3 3
4 4
5 4
Name: a, dtype: int32
for i, g in df.groupby([(df.a != df.a.shift()).cumsum()]):
print (i)
print (g)
print (g.a.tolist())
a
0 1
1 1
[1, 1]
2
a
2 -1
[-1]
3
a
3 1
[1]
4
a
4 -1
5 -1
[-1, -1]
使用 Jez
的itertools
数据中的 groupby
from itertools import groupby
[ list(group) for key, group in groupby(df.a.values.tolist())]
Out[361]: [[1, 1], [-1], [1], [-1, -1]]
Series.diff
是另一种标记组边界的方式(a!=a.shift
表示a.diff!=0
):
consecutives = df['a'].diff().ne(0).cumsum()
# 0 1
# 1 1
# 2 2
# 3 3
# 4 4
# 5 4
# Name: a, dtype: int64
并将这些组转换为一系列列表(请参阅列表列表的其他答案),聚合 groupby.agg
or groupby.apply
:
df['a'].groupby(consecutives).agg(list)
# a
# 1 [1, 1]
# 2 [-1]
# 3 [1]
# 4 [-1, -1]
# Name: a, dtype: object
如果您正在处理字符串值:
s = pd.DataFrame(['A','A','A','BB','BB','CC','A','A','BB'], columns=['a'])
string_groups = sum([['%s_%s' % (i,n) for i in g] for n,(k,g) in enumerate(itertools.groupby(s.a))],[])
>>> string_groups
['A_0', 'A_0', 'A_0', 'BB_1', 'BB_1', 'CC_2', 'A_3', 'A_3', 'BB_4']
grouped = s.groupby(string_groups, sort=False).agg(list)
grouped.index = grouped.index.str.split('_').str[0]
>>> grouped
a
A [A, A, A]
BB [BB, BB]
CC [CC]
A [A, A]
BB [BB]
作为一个单独的函数:
def groupby_consec(df, col):
string_groups = sum([['%s_%s' % (i, n) for i in g]
for n, (k, g) in enumerate(itertools.groupby(df[col]))], [])
return df.groupby(string_groups, sort=False)