计算 2 个向量中每个单词之间的 Jaccard 相似度

Calculate Jaccard similarity between each words in 2 vectors

我需要计算 2 个向量中每个单词之间的 Jaccard 相似度。每个字一个字。并提取最相似的词。

这是我糟糕的慢代码:

txt1 <- c('The quick brown fox jumps over the lazy dog')
txt2 <- c('Te quick foks jump ovar lazey dogg')

words <- strsplit(as.character(txt1), " ")
words.p <- strsplit(as.character(txt2), " ")

r <- length(words[[1]])
c <- length(words.p[[1]])

m <- matrix(nrow=r, ncol=c)
for (i in 1:r){
  for (j in 1:c){
    m[i,j] = stringdist(tolower(words.p[[1]][j]), tolower(words[[1]][i]), method='jaccard', q=2)
  }
}

ind <- which(m == min(m))-nrow(m)
words[[1]][ind]

请帮我改进和美化这个大数据框架的代码。

准备(在此处添加 tolower):

txt1 <- c('The quick brown fox jumps over the lazy dog')
txt2 <- c('Te quick foks jump ovar lazey dogg')

words <- unlist(strsplit(tolower(as.character(txt1)), " "))
words.p <- unlist(strsplit(tolower(as.character(txt2)), " "))

获取每个单词的距离:

dists <- sapply(words, Map, f=stringdist, list(words.p), method="jaccard")

对于 words 中的每个单词,从 words.p 中找到最接近的单词:

matches <- words.p[sapply(dists, which.min)]

cbind(words, matches)
              matches
 [1,] "the"   "te"
 [2,] "quick" "quick"
 [3,] "brown" "ovar"
 [4,] "fox"   "foks"
 [5,] "jumps" "jump"
 [6,] "over"  "ovar"
 [7,] "the"   "te"
 [8,] "lazy"  "lazey"
 [9,] "dog"   "dogg"

编辑:

要获得最匹配的词对,您首先需要 select 从 words 中的每个词到 words.p 中的所有词的最小距离:

mindists <- sapply(dists, min)

这将得到每个单词的最佳距离。那么你select距离words最小距离的词:

words[which.min(mindists)]

或者在一行中:

words[which.min(sapply(dists, min))]