有没有 cv2.KalmanFilter 实现的例子?
Is there any example of cv2.KalmanFilter implementation?
我正在尝试使用 python OpenCV (cv2) 包装器为 2D 对象构建一个非常简单的跟踪器。
我只注意到 3 个函数:
- 卡尔曼滤波器(构造函数)
- .预测()
- .正确(测量)
我的想法是创建一个代码来检查卡尔曼是否像这样工作:
kf = cv2.KalmanFilter(...)
# set initial position
cv2.predict()
corrected_position = cv2.correct([measurement_x, measurement_y])
我找到了一些使用 cv 包装器而不是 cv2 的示例...
提前致谢!
如果您使用的是 opencv2.4,那么这是个坏消息:KalmanFilter 不可用,因为您无法设置转换(或任何其他)矩阵。
对于 opencv3.0 它可以正常工作,如下所示:
import cv2, numpy as np
meas=[]
pred=[]
frame = np.zeros((400,400,3), np.uint8) # drawing canvas
mp = np.array((2,1), np.float32) # measurement
tp = np.zeros((2,1), np.float32) # tracked / prediction
def onmouse(k,x,y,s,p):
global mp,meas
mp = np.array([[np.float32(x)],[np.float32(y)]])
meas.append((x,y))
def paint():
global frame,meas,pred
for i in range(len(meas)-1): cv2.line(frame,meas[i],meas[i+1],(0,100,0))
for i in range(len(pred)-1): cv2.line(frame,pred[i],pred[i+1],(0,0,200))
def reset():
global meas,pred,frame
meas=[]
pred=[]
frame = np.zeros((400,400,3), np.uint8)
cv2.namedWindow("kalman")
cv2.setMouseCallback("kalman",onmouse);
kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03
#kalman.measurementNoiseCov = np.array([[1,0],[0,1]],np.float32) * 0.00003
while True:
kalman.correct(mp)
tp = kalman.predict()
pred.append((int(tp[0]),int(tp[1])))
paint()
cv2.imshow("kalman",frame)
k = cv2.waitKey(30) &0xFF
if k == 27: break
if k == 32: reset()
我正在尝试使用 python OpenCV (cv2) 包装器为 2D 对象构建一个非常简单的跟踪器。
我只注意到 3 个函数:
- 卡尔曼滤波器(构造函数)
- .预测()
- .正确(测量)
我的想法是创建一个代码来检查卡尔曼是否像这样工作:
kf = cv2.KalmanFilter(...)
# set initial position
cv2.predict()
corrected_position = cv2.correct([measurement_x, measurement_y])
我找到了一些使用 cv 包装器而不是 cv2 的示例...
提前致谢!
如果您使用的是 opencv2.4,那么这是个坏消息:KalmanFilter 不可用,因为您无法设置转换(或任何其他)矩阵。
对于 opencv3.0 它可以正常工作,如下所示:
import cv2, numpy as np
meas=[]
pred=[]
frame = np.zeros((400,400,3), np.uint8) # drawing canvas
mp = np.array((2,1), np.float32) # measurement
tp = np.zeros((2,1), np.float32) # tracked / prediction
def onmouse(k,x,y,s,p):
global mp,meas
mp = np.array([[np.float32(x)],[np.float32(y)]])
meas.append((x,y))
def paint():
global frame,meas,pred
for i in range(len(meas)-1): cv2.line(frame,meas[i],meas[i+1],(0,100,0))
for i in range(len(pred)-1): cv2.line(frame,pred[i],pred[i+1],(0,0,200))
def reset():
global meas,pred,frame
meas=[]
pred=[]
frame = np.zeros((400,400,3), np.uint8)
cv2.namedWindow("kalman")
cv2.setMouseCallback("kalman",onmouse);
kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03
#kalman.measurementNoiseCov = np.array([[1,0],[0,1]],np.float32) * 0.00003
while True:
kalman.correct(mp)
tp = kalman.predict()
pred.append((int(tp[0]),int(tp[1])))
paint()
cv2.imshow("kalman",frame)
k = cv2.waitKey(30) &0xFF
if k == 27: break
if k == 32: reset()