为什么朴素贝叶斯不能像逻辑回归那样在 Spark MLlib 管道中工作?

Why does Naive Bayes not work in Spark MLlib Pipeline like Logistic Regression?

我正在处理使用 Spark 和 Scala 对推文进行情绪分析的问题。我有一个使用逻辑回归模型的工作版本如下:

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType};
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.ml.feature.{CountVectorizer, RegexTokenizer, StopWordsRemover}
import org.apache.spark.sql.functions._
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.Word2Vec
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics

val sqlContext = new SQLContext(sc)

// Sentiment140 training corpus
val trainFile = "s3://someBucket/training.1600000.processed.noemoticon.csv"
val swFile = "s3://someBucket/stopwords.txt"
val tr = sc.textFile(trainFile)
val stopwords: Array[String] = sc.textFile(swFile).flatMap(_.stripMargin.split("\s+")).collect ++ Array("rt")

val parsed = tr.filter(_.contains("\",\"")).map(_.split("\",\"").map(_.replace("\"", ""))).filter(row => row.forall(_.nonEmpty)).map(row => (row(0).toDouble, row(5))).filter(row => row._1 != 2).map(row => (row._1 / 4, row._2)) 
val pDF = parsed.toDF("label","tweet") 
val tokenizer = new RegexTokenizer().setGaps(false).setPattern("\p{L}+").setInputCol("tweet").setOutputCol("words")
val filterer = new StopWordsRemover().setStopWords(stopwords).setCaseSensitive(false).setInputCol("words").setOutputCol("filtered")
val countVectorizer = new CountVectorizer().setInputCol("filtered").setOutputCol("features")

val lr = new LogisticRegression().setMaxIter(50).setRegParam(0.2).setElasticNetParam(0.0) 
val pipeline = new Pipeline().setStages(Array(tokenizer, filterer, countVectorizer, lr))

val lrModel = pipeline.fit(pDF)

// Now model is made.  Lets get some test data...

val testFile = "s3://someBucket/testdata.manual.2009.06.14.csv"
val te = sc.textFile(testFile)
val teparsed = te.filter(_.contains("\",\"")).map(_.split("\",\"").map(_.replace("\"", ""))).filter(row => row.forall(_.nonEmpty)).map(row => (row(0).toDouble, row(5))).filter(row => row._1 != 2).map(row => (row._1 / 4, row._2)) 
val teDF = teparsed.toDF("label","tweet")

val res = lrModel.transform(teDF)
val restup = res.select("label","prediction").rdd.map(r => (r(1).asInstanceOf[Double], r(0).asInstanceOf[Double]))
val metrics = new BinaryClassificationMetrics(restup)

metrics.areaUnderROC()

使用逻辑回归,这个 returns 完全正常的 AUC。但是,当我从逻辑回归切换到 val nb = new NaiveBayes() 时,出现以下错误:

found   : org.apache.spark.mllib.classification.NaiveBayes
required: org.apache.spark.ml.PipelineStage
   val pipeline = new Pipeline().setStages(Array(tokenizer, filterer, countVectorizer, nb))

在查阅 MLlib PipelineStage 列表中的 API 文档时,逻辑回归和朴素贝叶斯都被列为子类。那么为什么LR有效而NB无效呢?

它不起作用,因为你使用了不正确的class。管道使用:

org.apache.spark.ml.NaiveBayes

并参考 the documentation 以获得正确的语法。