Pandas 多列的填充,每列的模式
Pandas Fillna of Multiple Columns with Mode of Each Column
使用人口普查数据,我想用这两列各自的模式替换两列("workclass" 和 "native-country")中的 NaN。我可以轻松获得模式:
mode = df.filter(["workclass", "native-country"]).mode()
哪个returns一个数据帧:
workclass native-country
0 Private United-States
然而,
df.filter(["workclass", "native-country"]).fillna(mode)
不会用任何东西替换每列中的NaN,更不用说与该列对应的模式了。有没有一个流畅的方法来做到这一点?
你可以这样做:
df[["workclass", "native-country"]]=df[["workclass", "native-country"]].fillna(value=mode.iloc[0])
例如,
import pandas as pd
d={
'key3': [1,4,4,4,5],
'key2': [6,6,4],
'key1': [6,4,4],
}
df=pd.DataFrame.from_dict(d,orient='index').transpose()
那么df
就是
key3 key2 key1
0 1 6 6
1 4 6 4
2 4 4 4
3 4 NaN NaN
4 5 NaN NaN
然后通过做:
l=df.filter(["key1", "key2"]).mode()
df[["key1", "key2"]]=df[["key1", "key2"]].fillna(value=l.iloc[0])
我们得到 df
是
key3 key2 key1
0 1 6 6
1 4 6 4
2 4 4 4
3 4 6 4
4 5 6 4
如果你想用数据帧 df
的某些列中的 mode
来估算缺失值,你可以 fillna
by Series
created by select by position by iloc
:
cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])
或:
df[cols]=df[cols].fillna(mode.iloc[0])
您的解决方案:
df[cols]=df.filter(cols).fillna(mode.iloc[0])
样本:
df = pd.DataFrame({'workclass':['Private','Private',np.nan, 'another', np.nan],
'native-country':['United-States',np.nan,'Canada',np.nan,'United-States'],
'col':[2,3,7,8,9]})
print (df)
col native-country workclass
0 2 United-States Private
1 3 NaN Private
2 7 Canada NaN
3 8 NaN another
4 9 United-States NaN
mode = df.filter(["workclass", "native-country"]).mode()
print (mode)
workclass native-country
0 Private United-States
cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])
print (df)
col native-country workclass
0 2 United-States Private
1 3 United-States Private
2 7 Canada Private
3 8 United-States another
4 9 United-States Private
我认为使用字典作为 fillna 参数是最干净的'value'
参考:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html
根据@miriam-farber 的回复创建一个玩具 df
import pandas as pd
d={
'key3': [1,4,4,4,5],
'key2': [6,6,4],
'key1': [6,4,4],
}
d_df=pd.DataFrame.from_dict(d,orient='index').transpose()
创建字典
mode_dict = d_df.loc[:,['key2','key1']].mode().to_dict('records')[0]
在 fillna 方法中使用此字典
d_df.fillna(mode_dict, inplace=True)
此代码将均值归因于 int 列,将众数归因于对象列,列出两种类型的列并根据条件归因缺失值。
cateogry_columns=df.select_dtypes(include=['object']).columns.tolist()
integer_columns=df.select_dtypes(include=['int64','float64']).columns.tolist()
for column in df:
if df[column].isnull().any():
if(column in cateogry_columns):
df[column]=df[column].fillna(df[column].mode()[0])
else:
df[column]=df[column].fillna(df[column].mean)`
使用人口普查数据,我想用这两列各自的模式替换两列("workclass" 和 "native-country")中的 NaN。我可以轻松获得模式:
mode = df.filter(["workclass", "native-country"]).mode()
哪个returns一个数据帧:
workclass native-country
0 Private United-States
然而,
df.filter(["workclass", "native-country"]).fillna(mode)
不会用任何东西替换每列中的NaN,更不用说与该列对应的模式了。有没有一个流畅的方法来做到这一点?
你可以这样做:
df[["workclass", "native-country"]]=df[["workclass", "native-country"]].fillna(value=mode.iloc[0])
例如,
import pandas as pd
d={
'key3': [1,4,4,4,5],
'key2': [6,6,4],
'key1': [6,4,4],
}
df=pd.DataFrame.from_dict(d,orient='index').transpose()
那么df
就是
key3 key2 key1
0 1 6 6
1 4 6 4
2 4 4 4
3 4 NaN NaN
4 5 NaN NaN
然后通过做:
l=df.filter(["key1", "key2"]).mode()
df[["key1", "key2"]]=df[["key1", "key2"]].fillna(value=l.iloc[0])
我们得到 df
是
key3 key2 key1
0 1 6 6
1 4 6 4
2 4 4 4
3 4 6 4
4 5 6 4
如果你想用数据帧 df
的某些列中的 mode
来估算缺失值,你可以 fillna
by Series
created by select by position by iloc
:
cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])
或:
df[cols]=df[cols].fillna(mode.iloc[0])
您的解决方案:
df[cols]=df.filter(cols).fillna(mode.iloc[0])
样本:
df = pd.DataFrame({'workclass':['Private','Private',np.nan, 'another', np.nan],
'native-country':['United-States',np.nan,'Canada',np.nan,'United-States'],
'col':[2,3,7,8,9]})
print (df)
col native-country workclass
0 2 United-States Private
1 3 NaN Private
2 7 Canada NaN
3 8 NaN another
4 9 United-States NaN
mode = df.filter(["workclass", "native-country"]).mode()
print (mode)
workclass native-country
0 Private United-States
cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])
print (df)
col native-country workclass
0 2 United-States Private
1 3 United-States Private
2 7 Canada Private
3 8 United-States another
4 9 United-States Private
我认为使用字典作为 fillna 参数是最干净的'value'
参考:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html
根据@miriam-farber 的回复创建一个玩具 df
import pandas as pd
d={
'key3': [1,4,4,4,5],
'key2': [6,6,4],
'key1': [6,4,4],
}
d_df=pd.DataFrame.from_dict(d,orient='index').transpose()
创建字典
mode_dict = d_df.loc[:,['key2','key1']].mode().to_dict('records')[0]
在 fillna 方法中使用此字典
d_df.fillna(mode_dict, inplace=True)
此代码将均值归因于 int 列,将众数归因于对象列,列出两种类型的列并根据条件归因缺失值。
cateogry_columns=df.select_dtypes(include=['object']).columns.tolist()
integer_columns=df.select_dtypes(include=['int64','float64']).columns.tolist()
for column in df:
if df[column].isnull().any():
if(column in cateogry_columns):
df[column]=df[column].fillna(df[column].mode()[0])
else:
df[column]=df[column].fillna(df[column].mean)`