Pandas 多列的填充,每列的模式

Pandas Fillna of Multiple Columns with Mode of Each Column

使用人口普查数据,我想用这两列各自的模式替换两列("workclass" 和 "native-country")中的 NaN。我可以轻松获得模式:

mode = df.filter(["workclass", "native-country"]).mode()

哪个returns一个数据帧:

  workclass native-country
0   Private  United-States

然而,

df.filter(["workclass", "native-country"]).fillna(mode)

不会用任何东西替换每列中的NaN,更不用说与该列对应的模式了。有没有一个流畅的方法来做到这一点?

你可以这样做:

df[["workclass", "native-country"]]=df[["workclass", "native-country"]].fillna(value=mode.iloc[0])

例如,

    import pandas as pd
d={
    'key3': [1,4,4,4,5],
    'key2': [6,6,4],
    'key1': [6,4,4],
}

df=pd.DataFrame.from_dict(d,orient='index').transpose()

那么df就是

  key3  key2    key1
0   1   6       6
1   4   6       4
2   4   4       4
3   4   NaN     NaN
4   5   NaN     NaN

然后通过做:

l=df.filter(["key1", "key2"]).mode()
df[["key1", "key2"]]=df[["key1", "key2"]].fillna(value=l.iloc[0])

我们得到 df

  key3  key2    key1
0   1   6        6
1   4   6        4
2   4   4        4
3   4   6        4
4   5   6        4

如果你想用数据帧 df 的某些列中的 mode 来估算缺失值,你可以 fillna by Series created by select by position by iloc:

cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])

或:

df[cols]=df[cols].fillna(mode.iloc[0])

您的解决方案:

df[cols]=df.filter(cols).fillna(mode.iloc[0])

样本:

df = pd.DataFrame({'workclass':['Private','Private',np.nan, 'another', np.nan],
                   'native-country':['United-States',np.nan,'Canada',np.nan,'United-States'],
                   'col':[2,3,7,8,9]})

print (df)
   col native-country workclass
0    2  United-States   Private
1    3            NaN   Private
2    7         Canada       NaN
3    8            NaN   another
4    9  United-States       NaN

mode = df.filter(["workclass", "native-country"]).mode()
print (mode)
  workclass native-country
0   Private  United-States

cols = ["workclass", "native-country"]
df[cols]=df[cols].fillna(df.mode().iloc[0])
print (df)
   col native-country workclass
0    2  United-States   Private
1    3  United-States   Private
2    7         Canada   Private
3    8  United-States   another
4    9  United-States   Private

我认为使用字典作为 fillna 参数是最干净的'value'

参考:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html

根据@miriam-farber 的回复创建一个玩具 df

import pandas as pd
d={
    'key3': [1,4,4,4,5],
    'key2': [6,6,4],
    'key1': [6,4,4],
}

d_df=pd.DataFrame.from_dict(d,orient='index').transpose()

创建字典

mode_dict = d_df.loc[:,['key2','key1']].mode().to_dict('records')[0]

在 fillna 方法中使用此字典

d_df.fillna(mode_dict, inplace=True)

此代码将均值归因于 int 列,将众数归因于对象列,列出两种类型的列并根据条件归因缺失值。

cateogry_columns=df.select_dtypes(include=['object']).columns.tolist()
integer_columns=df.select_dtypes(include=['int64','float64']).columns.tolist()

for column in df:
    if df[column].isnull().any():
        if(column in cateogry_columns):
            df[column]=df[column].fillna(df[column].mode()[0])
        else:
            df[column]=df[column].fillna(df[column].mean)`