python 中虚拟变量之间的相互作用

Interactions between dummies variables in python

我正在尝试了解如何在使用 get_dummies 后对列进行寻址。 例如,假设我有三个分类变量。 第一个变量有 2 个级别。 第二个变量有 5 个级别。 第三个变量有 2 个水平。

df=pd.DataFrame({"a":["Yes","Yes","No","No","No","Yes","Yes"], "b":["a","b","c","d","e","a","c"],"c":["1","2","2","1","2","1","1"]})

我为所有三个变量创建了虚拟变量,以便在 python 中的 sklearn 回归中使用它们。

df1 = pd.get_dummies(df,drop_first=True)

现在我想创建两个交互(乘法):bc,ba

如何在不使用它们的特定名称的情况下创建每个虚拟变量与另一个虚拟变量之间的乘法:

df1['a_yes_b'] = df1['a_Yes']*df1['b_b']
df1['a_yes_c'] = df1['a_Yes']*df1['b_c']
df1['a_yes_d'] = df1['a_Yes']*df1['b_d']
df1['a_yes_e'] = df1['a_Yes']*df1['b_e']

df1['c_2_b'] = df1['c_2']*df1['b_b']
df1['c_2_c'] = df1['c_2']*df1['b_c']
df1['c_2_d'] = df1['c_2']*df1['b_d']
df1['c_2_e'] = df1['c_2']*df1['b_e']

谢谢。

您可以使用循环来创建新列,要过滤列名,可以使用 boolean indexing and str.startswith:

进行过滤
a = df1.columns[df1.columns.str.startswith('a')]
b = df1.columns[df1.columns.str.startswith('b')]
c = df1.columns[df1.columns.str.startswith('c')]

for col1 in b:
    for col2 in a:
        df1[col2 + '_' + col1.split('_')[1]] = df1[col1].mul(df1[col2])

for col1 in b:
    for col2 in c:
        df1[col2 + '_' + col1.split('_')[1]] = df1[col1].mul(df1[col2])
print (df1)

   a_Yes  b_b  b_c  b_d  b_e  c_2  a_Yes_b  a_Yes_c  a_Yes_d  a_Yes_e  c_2_b  \
0      1    0    0    0    0    0        0        0        0        0      0   
1      1    1    0    0    0    1        1        0        0        0      1   
2      0    0    1    0    0    1        0        0        0        0      0   
3      0    0    0    1    0    0        0        0        0        0      0   
4      0    0    0    0    1    1        0        0        0        0      0   
5      1    0    0    0    0    0        0        0        0        0      0   
6      1    0    1    0    0    0        0        1        0        0      0   

   c_2_c  c_2_d  c_2_e  
0      0      0      0  
1      0      0      0  
2      1      0      0  
3      0      0      0  
4      0      0      1  
5      0      0      0  
6      0      0      0  

但是如果 ab 只有一列(在样本中是,在实际数据中可能)使用:filter, mul, squeeze and concat:

a = df1.filter(regex='^a')
b = df1.filter(regex='^b')
c = df1.filter(regex='^c')

dfa = b.mul(a.squeeze(), axis=0).rename(columns=lambda x: a.columns[0] + x[1:])
dfc = b.mul(c.squeeze(), axis=0).rename(columns=lambda x: c.columns[0] + x[1:])

df1 = pd.concat([df1, dfa, dfc], axis=1)
print (df1)
   a_Yes  b_b  b_c  b_d  b_e  c_2  a_Yes_b  a_Yes_c  a_Yes_d  a_Yes_e  c_2_b  \
0      1    0    0    0    0    0        0        0        0        0      0   
1      1    1    0    0    0    1        1        0        0        0      1   
2      0    0    1    0    0    1        0        0        0        0      0   
3      0    0    0    1    0    0        0        0        0        0      0   
4      0    0    0    0    1    1        0        0        0        0      0   
5      1    0    0    0    0    0        0        0        0        0      0   
6      1    0    1    0    0    0        0        1        0        0      0   

   c_2_c  c_2_d  c_2_e  
0      0      0      0  
1      0      0      0  
2      1      0      0  
3      0      0      0  
4      0      0      1  
5      0      0      0  
6      0      0      0  

您可以将数据帧列转换为 numpy 数组,然后相应地相乘。这里是 link,您可以在其中找到执行此操作的方法:

这解决了您的问题:

def get_design_with_pair_interaction(data, group_pair):
    """ Get the design matrix with the pairwise interactions
    
    Parameters
    ----------
    data (pandas.DataFrame):
       Pandas data frame with the two variables to build the design matrix of their two main effects and their interaction
    group_pair (iterator):
       List with the name of the two variables (name of the columns) to build the design matrix of their two main effects and their interaction
    
    Returns
    -------
    x_new (pandas.DataFrame):
       Pandas data frame with the design matrix of their two main effects and their interaction
    
    """
    x = pd.get_dummies(data[group_pair])
    interactions_lst = list(
        itertools.combinations(
            x.columns.tolist(),
            2,
        ),
    ) 
    x_new = x.copy()
    for level_1, level_2 in interactions_lst:
        if level_1.split('_')[0] == level_2.split('_')[0]:
            continue
        x_new = pd.concat(
            [
                x_new,
                x[level_1] * x[level_2]
            ],
            axis=1,
        )
        x_new = x_new.rename(
            columns = {
                0: (level_1 + '_' + level_2)
            }
        )
    return x_new