如何从 Python 中的 pySpark 添加 SparkListener?

How to add a SparkListener from pySpark in Python?

我想创建一个 Jupyter/IPython 扩展来监控 Apache Spark 作业。

Spark 提供了 REST API。

然而,我希望通过回调发送事件更新,而不是轮询服务器。

我正在尝试注册 SparkListener with the SparkContext.addSparkListener()。此功能在 Python 中的 PySpark SparkContext 对象中不可用。那么我如何才能将 python 侦听器注册到 Python 的上下文的 Scala/Java 版本呢?是否可以通过py4j来做到这一点?我希望在侦听器中触发事件时调用 python 函数。

有可能,虽然有点牵强。我们可以使用 Py4j callback mechanismSparkListener 传递消息。首先让我们创建一个包含所有必需的 classes 的 Scala 包。目录结构:

.
├── build.sbt
└── src
    └── main
        └── scala
            └── net
                └── zero323
                    └── spark
                        └── examples
                            └── listener
                                ├── Listener.scala
                                ├── Manager.scala
                                └── TaskListener.scala

build.sbt:

name := "listener"

organization := "net.zero323"

scalaVersion := "2.11.7"

val sparkVersion = "2.1.0"

libraryDependencies ++= List(
  "org.apache.spark" %% "spark-core" % sparkVersion,
  "net.sf.py4j" % "py4j" % "0.10.4"  // Just for the record
)

Listener.scala定义了一个Python接口,我们稍后要实现

package net.zero323.spark.examples.listener

/* You can add arbitrary methods here, 
 * as long as these match corresponding Python interface 
 */
trait Listener {
  /* This will be implemented by a Python class.
   * You can of course use more specific types, 
   * for example here String => Unit */
  def notify(x: Any): Any
}

Manager.scala 将用于将消息转发给 Python 听众:

package net.zero323.spark.examples.listener

object Manager {
  var listeners: Map[String, Listener] = Map()

  def register(listener: Listener): String = {
    this.synchronized {
      val uuid = java.util.UUID.randomUUID().toString
      listeners = listeners + (uuid -> listener)
      uuid
    }
  }

  def unregister(uuid: String) = {
    this.synchronized {
      listeners = listeners - uuid
    }
  }

  def notifyAll(message: String): Unit = {
    for { (_, listener) <- listeners } listener.notify(message)
  }

}

最后一个简单的SparkListener:

package net.zero323.spark.examples.listener

import org.apache.spark.scheduler.{SparkListener, SparkListenerTaskEnd}
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

/* A simple listener which captures SparkListenerTaskEnd,
 * extracts numbers of records written by the task
 * and converts to JSON. You can of course add handlers 
 * for other events as well.
 */
class PythonNotifyListener extends SparkListener { 
  override def onTaskEnd(taskEnd: SparkListenerTaskEnd) {
    val recordsWritten = taskEnd.taskMetrics.outputMetrics.recordsWritten
    val message = compact(render(
      ("recordsWritten" ->  recordsWritten)
    ))
    Manager.notifyAll(message)
  }
}

让我们打包我们的扩展:

sbt package

并启动 PySpark 会话,将生成的 jar 添加到 class 路径并注册侦听器:

 $SPARK_HOME/bin/pyspark \
   --driver-class-path target/scala-2.11/listener_2.11-0.1-SNAPSHOT.jar \
   --conf spark.extraListeners=net.zero323.spark.examples.listener.PythonNotifyListener

接下来我们必须定义一个实现Listener接口的Python对象:

class PythonListener(object):
    package = "net.zero323.spark.examples.listener"

    @staticmethod
    def get_manager():
        jvm = SparkContext.getOrCreate()._jvm
        manager = getattr(jvm, "{}.{}".format(PythonListener.package, "Manager"))
        return manager

    def __init__(self):
        self.uuid = None

    def notify(self, obj):
        """This method is required by Scala Listener interface
        we defined above.
        """
        print(obj)

    def register(self):
        manager = PythonListener.get_manager()
        self.uuid = manager.register(self)
        return self.uuid

    def unregister(self):
        manager =  PythonListener.get_manager()
        manager.unregister(self.uuid)
        self.uuid = None

    class Java:
        implements = ["net.zero323.spark.examples.listener.Listener"]

启动回调服务器:

sc._gateway.start_callback_server()

创建并注册监听器:

listener = PythonListener()

注册它:

listener.register()

并测试:

>>> sc.parallelize(range(100), 3).saveAsTextFile("/tmp/listener_test")
{"recordsWritten":33}
{"recordsWritten":34}
{"recordsWritten":33}

退出时您应该关闭回调服务器:

sc._gateway.shutdown_callback_server()

:

在使用内部使用回调服务器的 Spark 流处理时应谨慎使用。

编辑:

如果这很麻烦,您可以定义 org.apache.spark.scheduler.SparkListenerInterface:

class SparkListener(object):
    def onApplicationEnd(self, applicationEnd):
        pass
    def onApplicationStart(self, applicationStart):
        pass
    def onBlockManagerRemoved(self, blockManagerRemoved):
        pass
    def onBlockUpdated(self, blockUpdated):
        pass
    def onEnvironmentUpdate(self, environmentUpdate):
        pass
    def onExecutorAdded(self, executorAdded):
        pass
    def onExecutorMetricsUpdate(self, executorMetricsUpdate):
        pass
    def onExecutorRemoved(self, executorRemoved):
        pass
    def onJobEnd(self, jobEnd):
        pass
    def onJobStart(self, jobStart):
        pass
    def onOtherEvent(self, event):
        pass
    def onStageCompleted(self, stageCompleted):
        pass
    def onStageSubmitted(self, stageSubmitted):
        pass
    def onTaskEnd(self, taskEnd):
        pass
    def onTaskGettingResult(self, taskGettingResult):
        pass
    def onTaskStart(self, taskStart):
        pass
    def onUnpersistRDD(self, unpersistRDD):
        pass
    class Java:
        implements = ["org.apache.spark.scheduler.SparkListenerInterface"]

扩展它:

class TaskEndListener(SparkListener):
    def onTaskEnd(self, taskEnd):
        print(taskEnd.toString())

并直接使用:

>>> sc._gateway.start_callback_server()
True
>>> listener = TaskEndListener()
>>> sc._jsc.sc().addSparkListener(listener)
>>> sc.parallelize(range(100), 3).saveAsTextFile("/tmp/listener_test_simple")
SparkListenerTaskEnd(0,0,ResultTask,Success,org.apache.spark.scheduler.TaskInfo@9e7514a,org.apache.spark.executor.TaskMetrics@51b8ba92)
SparkListenerTaskEnd(0,0,ResultTask,Success,org.apache.spark.scheduler.TaskInfo@71278a44,org.apache.spark.executor.TaskMetrics@bdc06d)
SparkListenerTaskEnd(0,0,ResultTask,Success,org.apache.spark.scheduler.TaskInfo@336)

虽然更简单,但此方法不是选择性的(JVM 和 Python 之间的流量更多)需要在 Python 会话中处理 Java 个对象。

我知道这是一个很老的问题。但是,我 运行 遇到了同样的问题,我们必须在 PySpark 应用程序中配置自定义开发的侦听器。可能在过去几年中,方法发生了变化。

我们所要做的就是指定包含侦听器 jar 的依赖 jar 文件,并设置 --conf spark.extraListeners 属性.

示例

--conf spark.extraListeners=fully.qualified.path.to.MyCustomListenerClass --conf my.param.name="hello world"

MyCustomListenerClass 可以有一个接受 SparkConf 对象的单参数构造函数。如果您想将任何参数传递给您的侦听器,只需将它们设置为配置 key-values 并且您应该能够从构造函数访问它们。

示例

public MyCustomListenerClass(SparkConf conf) {
        this.myParamName = conf.get("my.param.name", "default_param_value");
}

希望这对寻找更简单策略的人有所帮助。该方法适用于 Scala 和 PySpark,因为 spark 应用程序没有任何变化,框架负责通过传递 extraListeners 参数来注册您的侦听器。