Spark Shell with Yarn - Error: Yarn application has already ended! It might have been killed or unable to launch application master
Spark Shell with Yarn - Error: Yarn application has already ended! It might have been killed or unable to launch application master
作为 问题的后续,当我尝试在我的单节点计算机上使用 Spark 2.1.1 over Yarn (Hadoop 2.8.0) 时,我遇到了一个新错误。如果我用
启动 Spark Shell
spark-shell
它开始没有问题。在使用通常的 start-dfs.sh
和 start-yarn.sh
启动 Hadoop 之后,如果我使用
spark-shell --master yarn
我收到以下错误:
17/06/10 12:00:07 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/06/10 12:00:12 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2320)
at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:868)
at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:860)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:96)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:42)
at $line3.$read.<init>(<console>:44)
at $line3.$read$.<init>(<console>:48)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:69)
at org.apache.spark.repl.Main$.main(Main.scala:52)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:743)
at org.apache.spark.deploy.SparkSubmit$.doRunMain(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/06/10 12:00:12 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/06/10 12:00:12 WARN MetricsSystem: Stopping a MetricsSystem that is not running
我是 Spark/Yarn 的新手,所以我真的不知道去哪里寻找解决方案。我尝试了建议的 (这看起来像一个类似的问题,因为我使用的是 Java 8),但它没有任何效果。我也尝试使用 Java 7(将 JAVA_HOME
变量设置为 JDK 7 安装文件夹),但我仍然遇到相同的错误。你有什么想法吗?
你肯定可以 运行 spark-shell on yarn with --master-yarn。但是,对于 运行 spark-shell,您必须使用 'deploy-mode client',因为在 spark shell 的情况下,驱动程序将在客户端上 运行。如果出现错误,请尝试此操作 post
./bin/spark-shell --master yarn --deploy-mode client
我已经设法通过使用与 Liming Cen 对 .
的回答中描述的大致相同的方法来解决问题。
唯一的区别是我将 所有 中包含的 JAR 添加到我的 HDFS 中,压缩为一个 zip 文件。
然后在 $SPARK_HOME/libexec/conf/spark-defaults.conf
中添加了以下行:
spark.yarn.archive=hdfs:///user/MY_USERNAME/spark-archive.zip
这有可能是因为 java 1.8 并非 installed/configured 适合所有 YARN 节点......如果您使用的是 Cloudera,则必须确保 属性 "Java Home Directory" 已为特定 HOST 的 "Configuration" 选项卡内的所有主机正确配置。 (例如 /usr/lib/jvm/jdk1.8.0_144)
对我来说,YARN Nodemanager 节点上缺少一些 HDFS 库,
所以在 YARN NodeManager VM 上安装 hadoop-hdfs 和 hadoop-client 包后,问题得到解决
yum -y install hadoop-client.x86_64 hadoop-hdfs.x86_64
作为
spark-shell
它开始没有问题。在使用通常的 start-dfs.sh
和 start-yarn.sh
启动 Hadoop 之后,如果我使用
spark-shell --master yarn
我收到以下错误:
17/06/10 12:00:07 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/06/10 12:00:12 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2320)
at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:868)
at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:860)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:96)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:42)
at $line3.$read.<init>(<console>:44)
at $line3.$read$.<init>(<console>:48)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:69)
at org.apache.spark.repl.Main$.main(Main.scala:52)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:743)
at org.apache.spark.deploy.SparkSubmit$.doRunMain(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/06/10 12:00:12 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/06/10 12:00:12 WARN MetricsSystem: Stopping a MetricsSystem that is not running
我是 Spark/Yarn 的新手,所以我真的不知道去哪里寻找解决方案。我尝试了建议的 JAVA_HOME
变量设置为 JDK 7 安装文件夹),但我仍然遇到相同的错误。你有什么想法吗?
你肯定可以 运行 spark-shell on yarn with --master-yarn。但是,对于 运行 spark-shell,您必须使用 'deploy-mode client',因为在 spark shell 的情况下,驱动程序将在客户端上 运行。如果出现错误,请尝试此操作 post
./bin/spark-shell --master yarn --deploy-mode client
我已经设法通过使用与 Liming Cen 对
唯一的区别是我将 所有 中包含的 JAR 添加到我的 HDFS 中,压缩为一个 zip 文件。
然后在 $SPARK_HOME/libexec/conf/spark-defaults.conf
中添加了以下行:
spark.yarn.archive=hdfs:///user/MY_USERNAME/spark-archive.zip
这有可能是因为 java 1.8 并非 installed/configured 适合所有 YARN 节点......如果您使用的是 Cloudera,则必须确保 属性 "Java Home Directory" 已为特定 HOST 的 "Configuration" 选项卡内的所有主机正确配置。 (例如 /usr/lib/jvm/jdk1.8.0_144)
对我来说,YARN Nodemanager 节点上缺少一些 HDFS 库, 所以在 YARN NodeManager VM 上安装 hadoop-hdfs 和 hadoop-client 包后,问题得到解决
yum -y install hadoop-client.x86_64 hadoop-hdfs.x86_64