SciPy 具有行业级约束的投资组合优化

SciPy portfolio optimization with industry-level constraints

尝试在此处优化投资组合权重分配,通过限制风险最大化我的 return 功能。我可以通过所有权重之和等于 1 的简单约束找到让我的 return 函数产生的优化权重,并使另一个约束使我的总风险低于目标风险。

我的问题是,如何为每个组添加行业权重范围?

我的代码如下:

# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import scipy.optimize as sco

dates = pd.date_range('1/1/2000', periods=8)
industry = ['industry', 'industry', 'utility', 'utility', 'consumer']
symbols = ['A', 'B', 'C', 'D', 'E']  
zipped = list(zip(industry, symbols))
index = pd.MultiIndex.from_tuples(zipped)

noa = len(symbols)

data = np.array([[10, 9, 10, 11, 12, 13, 14, 13],
                 [11, 11, 10, 11, 11, 12, 11, 10],
                 [10, 11, 10, 11, 12, 13, 14, 13],
                 [11, 11, 10, 11, 11, 12, 11, 11],
                 [10, 11, 10, 11, 12, 13, 14, 13]])

market_to_market_price = pd.DataFrame(data.T, index=dates, columns=index)

rets = market_to_market_price / market_to_market_price.shift(1) - 1.0
rets = rets.dropna(axis=0, how='all')

expo_factor = np.ones((5,5))
factor_covariance = market_to_market_price.cov()
delta = np.diagflat([0.088024, 0.082614, 0.084237, 0.074648,
                                 0.084237])
cov_matrix = np.dot(np.dot(expo_factor, factor_covariance),
                            expo_factor.T) + delta

def calculate_total_risk(weights, cov_matrix):
    port_var = np.dot(np.dot(weights.T, cov_matrix), weights)
    return port_var

def max_func_return(weights):
    return -np.sum(rets.mean() * weights)

# optimized return with given risk
tolerance_risk = 27
noa = market_to_market_price.shape[1]
cons = ({'type': 'eq', 'fun': lambda x:  np.sum(x) - 1},
         {'type': 'eq', 'fun': lambda x:  calculate_total_risk(x, cov_matrix) - tolerance_risk})
bnds = tuple((0, 1) for x in range(noa))
init_guess = noa * [1. / noa,]
opts_mean = sco.minimize(max_func_return, init_guess, method='SLSQP',
                       bounds=bnds, constraints=cons)


In [88]: rets
Out[88]: 
            industry             utility            consumer
                   A         B         C         D         E
2000-01-02 -0.100000  0.000000  0.100000  0.000000  0.100000
2000-01-03  0.111111 -0.090909 -0.090909 -0.090909 -0.090909
2000-01-04  0.100000  0.100000  0.100000  0.100000  0.100000
2000-01-05  0.090909  0.000000  0.090909  0.000000  0.090909
2000-01-06  0.083333  0.090909  0.083333  0.090909  0.083333
2000-01-07  0.076923 -0.083333  0.076923 -0.083333  0.076923
2000-01-08 -0.071429 -0.090909 -0.071429  0.000000 -0.071429

In[89]: opts_mean['x'].round(3)
Out[89]: array([ 0.233,  0.117,  0.243,  0.165,  0.243])

我怎样才能添加这样的组界限,使 5 项资产的总和低于界限?

model = pd.DataFrame(np.array([.08,.12,.05]), index= set(industry), columns = ['strategic'])
model['tactical'] = [(.05,.41), (.2,.66), (0,.16)]
In [85]: model
Out[85]: 
          strategic      tactical
industry       0.08  (0.05, 0.41)
consumer       0.12   (0.2, 0.66)
utility        0.05     (0, 0.16)

我读过这篇类似的文章post SciPy optimization with grouped bounds,但仍然没有得到任何线索,任何人都可以帮忙吗? 谢谢。

首先,考虑使用cvxopt,一个专门为凸优化设计的模块。我不太熟悉,但有效边界的一个例子是 here.

现在回答您的问题,这里有一个解决方法专门适用于您发布并使用的问题 minimize。 (它可以被推广以在输入类型和用户友好性方面创造更大的灵活性,并且基于 class 的实现在这里也很有用。)

关于您的问题 "how can I add group bounds?",简短的回答是您实际上需要通过 constraints 而不是 bounds 参数来执行此操作,因为

Optionally, the lower and upper bounds for each element in x can also be specified using the bounds argument. [emphasis added]

此规范与您的尝试不符。相反,下面的示例是为每个组的上限和下限分别添加不等式约束。函数 mapto_constraints returns 添加到当前约束的字典列表。

首先,这里有一些示例数据:

import pandas as pd
import numpy as np
import numpy.random as npr
npr.seed(123)
from scipy.optimize import minimize

# Create a DataFrame of hypothetical returns for 5 stocks across 3 industries,
# at daily frequency over a year.  Note that these will be in decimal
# rather than numeral form. (i.e. 0.01 denotes a 1% return)

dates = pd.bdate_range(start='1/1/2000', end='12/31/2000')
industry = ['industry'] * 2 + ['utility'] * 2 + ['consumer']
symbols = list('ABCDE')
zipped = list(zip(industry, symbols))
cols = pd.MultiIndex.from_tuples(zipped)
returns = pd.DataFrame(npr.randn(len(dates), len(cols)), index=dates, columns=cols)
returns /= 100 + 3e-3 #drift term

returns.head()
Out[191]: 
           industry           utility          consumer
                  A        B        C        D        E
2000-01-03 -0.01484  0.00986 -0.00476  0.00235 -0.00630
2000-01-04  0.00518  0.00958 -0.01210 -0.00814 -0.01664
2000-01-05  0.00233 -0.01665 -0.00366  0.00520  0.02058
2000-01-06  0.00368  0.01253  0.00259  0.00309 -0.00211
2000-01-07 -0.00383  0.01174  0.00375  0.00336 -0.00608

可以看到年化数字"make sense":

(1 + returns.mean()) ** 252 - 1
Out[199]: 
industry  A   -0.05531
          B    0.32455
utility   C    0.10979
          D    0.14339
consumer  E   -0.12644

现在介绍一些将在优化中使用的功能。这些都是根据 Yves Hilpisch 的 Python for Finance 第 11 章中的示例密切建模的。

def logrels(rets):
    """Log of return relatives, ln(1+r), for a given DataFrame rets."""
    return np.log(rets + 1)

def statistics(weights, rets):
    """Compute expected portfolio statistics from individual asset returns.

    Parameters
    ==========
    rets : DataFrame
        Individual asset returns.  Use numeral rather than decimal form
    weights : array-like
        Individual asset weights, nx1 vector.

    Returns
    =======
    list of (pret, pvol, pstd); these are *per-period* figures (not annualized)
        pret : expected portfolio return
        pvol : expected portfolio variance
        pstd : expected portfolio standard deviation

    Note
    ====
    Note that Modern Portfolio Theory (MPT), being a single-period model,
    works with (optimizes using) continuously compounded returns and
    volatility, using log return relatives.  The difference between these and
    more commonly used geometric means will be negligible for small returns.
    """

    if isinstance(weights, (tuple, list)):
        weights = np.array(weights)
    pret = np.sum(logrels(rets).mean() * weights)
    pvol = np.dot(weights.T, np.dot(logrels(rets).cov(), weights))
    pstd = np.sqrt(pvol)
    return [pret, pvol, pstd]

# The below are a few convenience functions around statistics() above, needed
# because scipy minimize must optimize a function that returns a scalar

def port_ret(weights, rets):
    return -1 * statistics(weights=weights, rets=rets)[0]

def port_variance(weights, rets):
    return statistics(weights=weights, rets=rets)[1]

这是等权重投资组合的预期年化标准差。我只是在这里给出它作为优化中的锚点(risk_tol 参数)。

statistics([0.2] * 5, returns)[2] * np.sqrt(252) # ew anlzd stdev
Out[192]: 0.06642120658640735

下一个函数采用看起来像您的 model DataFrame 的 DataFrame 并为每个组构建约束。请注意,这非常不灵活,因为您需要遵循您现在使用的 returns 和 model DataFrame 的特定格式。

def mapto_constraints(rets, model):
    tactical = model['tactical'].to_dict() # values are tuple bounds
    industries = rets.columns.get_level_values(0)
    group_cons = list()
    for key in tactical:
        if isinstance(industries.get_loc('consumer'), int):
            pos = [industries.get_loc(key)]
        else:
            pos = np.where(industries.get_loc(key))[0].tolist()
        lb = tactical[key][0]
        ub = tactical[key][1] # upper and lower bounds
        lbdict = {'type': 'ineq', 
                  'fun': lambda x: np.sum(x[pos[0]:(pos[-1] + 1)]) - lb}
        ubdict = {'type': 'ineq', 
                  'fun': lambda x: ub - np.sum(x[pos[0]:(pos[-1] + 1)])}
        group_cons.append(lbdict); group_cons.append(ubdict)
    return group_cons

上面关于如何构建约束的注释:

Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative.

最后,优化本身:

def opt(rets, risk_tol, model, round=3):    
    noa = len(rets.columns)
    guess = noa * [1. / noa,] # equal-weight; needed for initial guess
    bnds = tuple((0, 1) for x in range(noa))
    cons = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1.},
            {'type': 'ineq', 'fun': lambda x: risk_tol - port_variance(x, rets=rets)}
           ] + mapto_constraints(rets=rets, model=model)
    opt = minimize(port_ret, guess, args=(returns,), method='SLSQP', bounds=bnds, 
                   constraints=cons, tol=1e-10)
    return opt.x.round(round)

model = pd.DataFrame(np.array([.08,.12,.05]), 
                     index= set(industry), columns = ['strategic'])
model['tactical'] = [(.05,.41), (.2,.66), (0,.16)]

# Set variance threshold equal to the equal-weighted variance
# Note that I set variance as an inequality rather than equality (i.e.
# resulting variance should be less than threshold).

opt(returns, risk_tol=port_variance([0.2] * 5, returns), model=model)
Out[195]: array([ 0.188,  0.225,  0.229,  0.197,  0.16 ])