如何在 Spark ML 中预测价值

How to Predict value in Spark ML

非常 Spark 机器学习新手 (4 天前) 我正在 Spark 中执行以下代码 Shell 我正在尝试预测一些值

我的要求是我有包含以下内容的数据

 Userid,Date,SwipeIntime
 1, 1-Jan-2017,9.30
 1, 2-Jan-2017,9.35
 1, 3-Jan-2017,9.45
 1, 4-Jan-2017,9.26
 2, 1-Jan-2017,9.37
 2, 2-Jan-2017,9.35
 2, 3-Jan-2017,9.45
 2, 4-Jan-2017,9.46     

我需要预测 Userid = 1 的 SwipeIntime 会在 2017 年 1 月 5 日或任何日期

我试过的是 Spark 中的以下代码 Shell

代码:

 case class LabeledDocument(Userid: Double, Date: String, label: Double)
 val training = spark.read.option("inferSchema", true).csv("/root/Predictiondata2.csv").toDF
 ("Userid","Date","label").toDF().as[LabeledDocument]
 import scala.beans.BeanInfo
 import org.apache.spark.{SparkConf, SparkContext}
 import org.apache.spark.ml.Pipeline
 import org.apache.spark.ml.classification.LogisticRegression
 import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
 import org.apache.spark.mllib.linalg.Vector
 import org.apache.spark.sql.{Row, SQLContext}
 val tokenizer = new Tokenizer().setInputCol("Date").setOutputCol("words")
 val hashingTF = new HashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOutputCol).setOutputCol("features")
 import org.apache.spark.ml.regression.LinearRegression
 val lr = new LinearRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
 val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr))
 val model = pipeline.fit(training.toDF())
 case class Document(Userid: Integer, Date: String)
 val test = sc.parallelize(Seq(Document(4, "04-Jan-18"),Document(5, "01-Jan-17"),Document(2, "03-Jan-17")))
 model.transform(test.toDF()).show()

得到不正确的输出(所有用户使用相同的 SwipeIntime)

 scala> model.transform(test.toDF()).show() 
 +------+---------+-----------+------------------+-----------------+
 |Userid|     Date|      words|          features|       prediction|
 +------+---------+-----------+------------------+-----------------+
 |     4|04-Jan-18|[04-jan-18]|(1000,[455],[1.0])|9.726888888888887|
 |     5|01-Jan-17|[01-jan-17]|(1000,[595],[1.0])|9.726888888888887|
 |     2|03-Jan-17|[03-jan-17]|(1000,[987],[1.0])|9.726888888888887|
 +------+---------+-----------+------------------+-----------------+

如果有人对上述代码提供任何建议以使其正常工作,我将不胜感激。

为什么您认为它不起作用?因为预测都一样?

我遇到了与 描述类似的问题,但在 PySpark 中。

我通过提高 MaxIter 并降低 RegParam 和 ElasticNetParam 解决了这个问题。

尝试这样设置它们:

val lr = new LinearRegression().setMaxIter(100).setRegParam(0.001).setElasticNetParam(0.0001)

希望有用!