你如何在代码中使用 PyTorch PackedSequence?

How do you use PyTorch PackedSequence in code?

有人可以提供完整的工作代码(不是片段,而是在可变长度递归神经网络上运行的代码),说明您将如何在 PyTorch 中使用 PackedSequence 方法吗?

文档、github 或互联网中似乎没有这方面的任何示例。

https://github.com/pytorch/pytorch/releases/tag/v0.1.10

这不是最漂亮的代码,但这是我在浏览 PyTorch 论坛和文档后收集的供个人使用的代码。当然可以有更好的方法来处理排序 - 恢复部分,但我选择它在网络本身中

编辑:请参阅@tusongao 的回答,它使 torch utils 负责对零件进行分类

class Encoder(nn.Module):
    def __init__(self, vocab_size, embedding_size, embedding_vectors=None, tune_embeddings=True, use_gru=True,
                 hidden_size=128, num_layers=1, bidrectional=True, dropout=0.6):
        super(Encoder, self).__init__()
        self.embed = nn.Embedding(vocab_size, embedding_size, padding_idx=0)
        self.embed.weight.requires_grad = tune_embeddings
        if embedding_vectors is not None:
            assert embedding_vectors.shape[0] == vocab_size and embedding_vectors.shape[1] == embedding_size
            self.embed.weight = nn.Parameter(torch.FloatTensor(embedding_vectors))
        cell = nn.GRU if use_gru else nn.LSTM
        self.rnn = cell(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers,
                        batch_first=True, bidirectional=True, dropout=dropout)

    def forward(self, x, x_lengths):
        sorted_seq_lens, original_ordering = torch.sort(torch.LongTensor(x_lengths), dim=0, descending=True)
        ex = self.embed(x[original_ordering])
        pack = torch.nn.utils.rnn.pack_padded_sequence(ex, sorted_seq_lens.tolist(), batch_first=True)
        out, _ = self.rnn(pack)
        unpacked, unpacked_len = torch.nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
        indices = Variable(torch.LongTensor(np.array(unpacked_len) - 1).view(-1, 1)
                                                                       .expand(unpacked.size(0), unpacked.size(2))
                                                                       .unsqueeze(1))
        last_encoded_states = unpacked.gather(dim=1, index=indices).squeeze(dim=1)
        scatter_indices = Variable(original_ordering.view(-1, 1).expand_as(last_encoded_states))
        encoded_reordered = last_encoded_states.clone().scatter_(dim=0, index=scatter_indices, src=last_encoded_states)
        return encoded_reordered

其实不用介意排序-自己还原问题,让torch.nn.utils.rnn.pack_padded_sequence函数完成所有工作,通过设置参数enforce_sorted=False.

则返回的PackedSequence对象会在其sorted_indicesunsorted_indicies属性中携带排序相关信息,可以被后面的nn.GRUnn.LSTM恢复原来的索引顺序。

可运行代码示例:

import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence

data = [torch.tensor([1]),
        torch.tensor([2, 3, 4, 5]), 
        torch.tensor([6, 7]),
        torch.tensor([8, 9, 10])]
lengths = [d.size(0) for d in data]

padded_data = pad_sequence(data, batch_first=True, padding_value=0) 
embedding = nn.Embedding(20, 5, padding_idx=0)
embeded_data = embedding(padded_data)

packed_data = pack_padded_sequence(embeded_data, lengths, batch_first=True, enforce_sorted=False)
lstm = nn.LSTM(5, 5, batch_first=True)
o, (h, c) = lstm(packed_data)

# (h, c) is the needed final hidden and cell state, with index already restored correctly by LSTM.
# but o is a PackedSequence object, to restore to the original index:

unpacked_o, unpacked_lengths = pad_packed_sequence(o, batch_first=True)
# now unpacked_o, (h, c) is just like the normal output you expected from a lstm layer.

print(unpacked_o, unpacked_lengths)

我们得到 unpacked_o, unpacked_lengths 的输出如下:

# output (unpacked_o, unpacked_lengths):
tensor([[[ 1.5230, -1.7530,  0.5462,  0.6078,  0.9440],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000]],

        [[ 1.8888, -0.5465,  0.5404,  0.4132, -0.3266],
         [ 0.1657,  0.5875,  0.4556, -0.8858,  1.1443],
         [ 0.8957,  0.8676, -0.6614,  0.6751, -1.2377],
         [-1.8999,  2.8260,  0.1650, -0.6244,  1.0599]],

        [[ 0.0637,  0.3936, -0.4396, -0.2788,  0.1282],
         [ 0.5443,  0.7401,  1.0287, -0.1538, -0.2202],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000]],

        [[-0.5008,  2.1262, -0.3623,  0.5864,  0.9871],
         [-0.6996, -0.3984,  0.4890, -0.8122, -1.0739],
         [ 0.3392,  1.1305, -0.6669,  0.5054, -1.7222],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]],
       grad_fn=<IndexSelectBackward>) tensor([1, 4, 2, 3])

与原来的datalengths相比,我们可以发现排序-恢复问题得到了很好的解决。