如何对复杂数据类型进行自动微分?

How to do automatic differentiation on complex datatypes?

给定一个基于向量的非常简单的矩阵定义:

import Numeric.AD
import qualified Data.Vector as V

newtype Mat a = Mat { unMat :: V.Vector a }

scale' f = Mat . V.map (*f) . unMat
add' a b = Mat $ V.zipWith (+) (unMat a) (unMat b)
sub' a b = Mat $ V.zipWith (-) (unMat a) (unMat b)
mul' a b = Mat $ V.zipWith (*) (unMat a) (unMat b)
pow' a e = Mat $ V.map (^e) (unMat a)

sumElems' :: Num a => Mat a -> a
sumElems' = V.sum . unMat

(出于演示目的...我正在使用 hmatrix,但我认为问题出在某种程度上)

和一个误差函数(eq3):

eq1' :: Num a => [a] -> [Mat a] -> Mat a
eq1' as φs = foldl1 add' $ zipWith scale' as φs

eq3' :: Num a => Mat a -> [a] -> [Mat a] -> a
eq3' img as φs = negate $ sumElems' (errImg `pow'` (2::Int))
  where errImg = img `sub'` (eq1' as φs)

为什么编译器无法在其中推断出正确的类型?

diffTest :: forall a . (Fractional a, Ord a) => Mat a -> [Mat a] -> [a] -> [[a]]
diffTest m φs as0 = gradientDescent go as0
  where go xs = eq3' m xs φs

确切的错误信息是这样的:

src/Stuff.hs:59:37:
    Could not deduce (a ~ Numeric.AD.Internal.Reverse.Reverse s a)
    from the context (Fractional a, Ord a)
      bound by the type signature for
                 diffTest :: (Fractional a, Ord a) =>
                             Mat a -> [Mat a] -> [a] -> [[a]]
      at src/Stuff.hs:58:13-69
    or from (reflection-1.5.1.2:Data.Reflection.Reifies
               s Numeric.AD.Internal.Reverse.Tape)
      bound by a type expected by the context:
                 reflection-1.5.1.2:Data.Reflection.Reifies
                   s Numeric.AD.Internal.Reverse.Tape =>
                 [Numeric.AD.Internal.Reverse.Reverse s a]
                 -> Numeric.AD.Internal.Reverse.Reverse s a
      at src/Stuff.hs:59:21-42
      ‘a’ is a rigid type variable bound by
          the type signature for
            diffTest :: (Fractional a, Ord a) =>
                        Mat a -> [Mat a] -> [a] -> [[a]]
          at src//Stuff.hs:58:13
    Expected type: [Numeric.AD.Internal.Reverse.Reverse s a]
                   -> Numeric.AD.Internal.Reverse.Reverse s a
      Actual type: [a] -> a
    Relevant bindings include
      go :: [a] -> a (bound at src/Stuff.hs:60:9)
      as0 :: [a] (bound at src/Stuff.hs:59:15)
      φs :: [Mat a] (bound at src/Stuff.hs:59:12)
      m :: Mat a (bound at src/Stuff.hs:59:10)
      diffTest :: Mat a -> [Mat a] -> [a] -> [[a]]
        (bound at src/Stuff.hs:59:1)
    In the first argument of ‘gradientDescent’, namely ‘go’
    In the expression: gradientDescent go as0

gradientDescent function from ad 的类型为

gradientDescent :: (Traversable f, Fractional a, Ord a) =>
                   (forall s. Reifies s Tape => f (Reverse s a) -> Reverse s a) ->
                   f a -> [f a]

它的第一个参数需要一个 f r -> r 类型的函数,其中 rforall s. (Reverse s a)go 的类型为 [a] -> a,其中 adiffTest 签名中绑定的类型。这些 a 相同,但 Reverse s aa 不同。

Reverse 类型有许多类型 classes 的实例,可以让我们将 a 转换为 Reverse s a 或返回。最明显的是 Fractional a => Fractional (Reverse s a),它允许我们使用 realToFrac.

as 转换为 Reverse s as

为此,我们需要能够将函数 a -> b 映射到 Mat a 上以获得 Mat b。最简单的方法是为 Mat.

派生一个 Functor 实例
{-# LANGUAGE DeriveFunctor #-}

newtype Mat a = Mat { unMat :: V.Vector a }
    deriving Functor

我们可以将 mfs 转换为 Fractional a' => Mat a'fmap realToFrac

diffTest m fs as0 = gradientDescent go as0
  where go xs = eq3' (fmap realToFrac m) xs (fmap (fmap realToFrac) fs)

但是有一个更好的方法隐藏在广告包中。 Reverse s a 对所有 s 具有普遍限定,但 adiffTest 的类型签名中绑定的 a 相同。我们真的只需要一个函数a -> (forall s. Reverse s a)。此函数是 Mode class 中的 autoReverse s a 有一个实例。 auto 有稍微奇怪的类型 Mode t => Scalar t -> ttype Scalar (Reverse s a) = a。专用于 Reverse auto 具有类型

auto :: (Reifies s Tape, Num a) => a -> Reverse s a

这使我们能够将 Mat a 转换为 Mat (Reverse s a),而无需在 RationalRational 之间进行转换。

{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}

diffTest :: forall a . (Fractional a, Ord a) => Mat a -> [Mat a] -> [a] -> [[a]]
diffTest m fs as0 = gradientDescent go as0
  where
    go :: forall t. (Scalar t ~ a, Mode t) => [t] -> t
    go xs = eq3' (fmap auto m) xs (fmap (fmap auto) fs)