Keras + Tensorflow 奇怪的结果

Keras + Tensorflow strange results

使用 Pimia Indians 糖尿病数据集,我构建了以下顺序模型:

import matplotlib.pyplot as plt
import numpy
from keras import callbacks
from keras import optimizers
from keras.layers import Dense
from keras.models import Sequential
from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import StandardScaler

#TensorBoard callback for visualization of training history
tb = callbacks.TensorBoard(log_dir='./logs/latest', histogram_freq=10, batch_size=32,
                           write_graph=True, write_grads=True, write_images=False,
                           embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)


# Early stopping - Stop training before overfitting
early_stop = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto')

# fix random seed for reproducibility
seed = 42
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:, 0:8]
Y = dataset[:, 8]

# Standardize features by removing the mean and scaling to unit variance
scaler = StandardScaler()
X = scaler.fit_transform(X)


#ADAM Optimizer with learning rate decay
opt = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0001)

## Create our model
model = Sequential()

model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))

# Compile the model using binary crossentropy since we are predicting 0/1
model.compile(loss='binary_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

# checkpoint
filepath="./checkpoints/weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

# Fit the model
history = model.fit(X, Y, validation_split=0.33, epochs=10000, batch_size=10, verbose=0, callbacks=[tb,early_stop,checkpoint])
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

我添加了提前停止、检查点和 Tensorboard 回调,并得到了以下结果:

Epoch 00000: val_acc improved from -inf to 0.67323, saving model to ./checkpoints/weights.best.hdf5
Epoch 00001: val_acc did not improve
...
Epoch 00024: val_acc improved from 0.67323 to 0.67323, saving model to ./checkpoints/weights.best.hdf5
...
Epoch 00036: val_acc improved from 0.76378 to 0.76378, saving model to ./checkpoints/weights.best.hdf5
...
Epoch 00044: val_acc improved from 0.79921 to 0.80709, saving model to ./checkpoints/weights.best.hdf5
...
Epoch 00050: val_acc improved from 0.80709 to 0.80709, saving model to ./checkpoints/weights.best.hdf5
...
Epoch 00053: val_acc improved from 0.80709 to 0.81102, saving model to ./checkpoints/weights.best.hdf5
...
Epoch 00257: val_acc improved from 0.81102 to 0.81102, saving model to ./checkpoints/weights.best.hdf5
...
Epoch 00297: val_acc improved from 0.81102 to 0.81496, saving model to ./checkpoints/weights.best.hdf5
Epoch 00298: val_acc did not improve
Epoch 00299: val_acc did not improve
Epoch 00300: val_acc did not improve
Epoch 00301: val_acc did not improve
Epoch 00302: val_acc did not improve
Epoch 00302: early stopping

所以根据日志,我的模型精度是0.81496。奇怪的是验证精度高于训练精度(0.81 vs 0.76),验证损失低于训练损失(0.41 vs 0.47)。

问:我遗漏了什么,我需要在我的代码中更改什么才能解决这个问题?

如果你打乱数据,问题就解决了。

import matplotlib.pyplot as plt
import numpy
from keras import callbacks
from keras import optimizers
from keras.layers import Dense
from keras.models import Sequential
from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle

# TensorBoard callback for visualization of training history
tb = callbacks.TensorBoard(log_dir='./logs/4', histogram_freq=10, batch_size=32,
                           write_graph=True, write_grads=True, write_images=False,
                           embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)


# Early stopping - Stop training before overfitting
early_stop = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto')

# fix random seed for reproducibility
seed = 42
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("../Downloads/pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:, 0:8]
Y = dataset[:, 8]

# Standardize features by removing the mean and scaling to unit variance
scaler = StandardScaler()
X = scaler.fit_transform(X)

# This is the important part
X, Y = shuffle(X, Y)

#ADAM Optimizer with learning rate decay
opt = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0001)

## Create our model
model = Sequential()

model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))

# Compile the model using binary crossentropy since we are predicting 0/1
model.compile(loss='binary_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

# checkpoint
# filepath="./checkpoints/weights.best.hdf5"
# checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

# Fit the model
history = model.fit(X, Y, validation_split=0.33, epochs=1000, batch_size=10, verbose=0, callbacks=[tb,early_stop])
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()