R 中是否有对 dist 函数的稀疏支持?

Is there any sparse support for dist function in R?

有没有人听说过任何与创建

dist{stats} 函数相同的包或功能

distance matrix that is computed by using the specified distance measure to compute the distances between the rows of a data matrix,

但以sprase矩阵作为输入?

我的 data.frame(名为 dataCluster)的亮度为:7000 X 10000,稀疏度几乎为 99%。在不稀疏的常规形式中,此功能似乎不会停止工作...

h1 <- hclust( dist( dataCluster ) , method = "complete" )

没有答案的类似问题: Sparse Matrix as input to Hierarchical clustering in R

你想要wordspace::dist.matrix.

它接受来自 Matrix 包的稀疏矩阵(从文档中不清楚)并且还可以做交叉距离,输出 Matrixdist 对象等等.

虽然默认距离度量是 'cosine',因此如果需要,请务必指定 method = 'euclidean'

**更新:**事实上,您可以很容易地完成 qlcMatrix 所做的事情:

sparse.cos <- function(x, y = NULL, drop = TRUE){
    if(!is.null(y)){
        if(class(x) != "dgCMatrix" || class(y) != "dgCMatrix") stop ("class(x) or class(y) != dgCMatrix")
        if(drop == TRUE) colnames(x) <- rownames(x) <- colnames(y) <- rownames(y) <- NULL
        crossprod(
            tcrossprod(
                x, 
                Diagonal(x = as.vector(crossprod(x ^ 2, rep(1, x@Dim[1]))) ^ -0.5)
            ),
            tcrossprod(
                y, 
                Diagonal(x = as.vector(crossprod(y ^ 2, rep(1, x@Dim[1]))) ^ -0.5))
            )
        )
    } else {
        if(class(x) != "dgCMatrix") stop ("class(x) != dgCMatrix")
        if(drop == TRUE) colnames(x) <- rownames(X) <- NULL
        crossprod(
            tcrossprod(
                x,
                Diagonal(x = as.vector(crossprod(x ^ 2, rep(1, nrow(x)))) ^ -0.5))
        )
    }
}

我发现上面的和 qlcMatrix::cosSparse 在性能上没有显着差异。


qlcMatrix::cosSparse 当数据稀疏度 >50% 或在输入矩阵的最长边(即高格式)上计算相似度时,qlcMatrix::cosSparsewordspace::dist.matrix 快。

wordspace::dist.matrixqlcMatrix::cosSparse 在不同稀疏度(10%、50%、90% 或 99% 稀疏度)的宽矩阵 (1000 x 5000) 上计算 1000 的性能x 1000 相似度:

# M1 is 10% sparse, M99 is 99% sparse
set.seed(123)
M10 <- rsparsematrix(5000, 1000, density = 1)
M50 <- rsparsematrix(5000, 1000, density = 0.5)
M90 <- rsparsematrix(5000, 1000, density = 0.1)
M99 <- rsparsematrix(5000, 1000, density = 0.01)
tM10 <- t(M10)
tM50 <- t(M50)
tM90 <- t(M90)
tM99 <- t(M99)
benchmark(
 "cosSparse: 10% sparse" = cosSparse(M10),
 "cosSparse: 50% sparse" = cosSparse(M50),
 "cosSparse: 90% sparse" = cosSparse(M90),
 "cosSparse: 99% sparse" = cosSparse(M99),
 "wordspace: 10% sparse" = dist.matrix(tM10, byrow = TRUE),
 "wordspace: 50% sparse" = dist.matrix(tM50, byrow = TRUE),
 "wordspace: 90% sparse" = dist.matrix(tM90, byrow = TRUE),
 "wordspace: 99% sparse" = dist.matrix(tM99, byrow = TRUE),
 replications = 2, columns = c("test", "elapsed", "relative"))

这两个函数非常相似,wordspace 在低稀疏度时略有领先,但在高稀疏度时绝对不是:

                   test elapsed relative
1 cosSparse: 10% sparse   15.83  527.667
2 cosSparse: 50% sparse    4.72  157.333
3 cosSparse: 90% sparse    0.31   10.333
4 cosSparse: 99% sparse    0.03    1.000
5 wordspace: 10% sparse   15.23  507.667
6 wordspace: 50% sparse    4.28  142.667
7 wordspace: 90% sparse    0.36   12.000
8 wordspace: 99% sparse    0.09    3.000

如果我们翻转计算以计算 5000 x 5000 矩阵,则:

benchmark(
 "cosSparse: 50% sparse" = cosSparse(tM50),
 "cosSparse: 90% sparse" = cosSparse(tM90),
 "cosSparse: 99% sparse" = cosSparse(tM99),
 "wordspace: 50% sparse" = dist.matrix(M50, byrow = TRUE),
 "wordspace: 90% sparse" = dist.matrix(M90, byrow = TRUE),
 "wordspace: 99% sparse" = dist.matrix(M99, byrow = TRUE),
 replications = 1, columns = c("test", "elapsed", "relative"))

现在cosSparse的竞争优势变得非常明显:

                   test elapsed relative
1 cosSparse: 50% sparse   10.58  151.143
2 cosSparse: 90% sparse    1.44   20.571
3 cosSparse: 99% sparse    0.07    1.000
4 wordspace: 50% sparse   11.41  163.000
5 wordspace: 90% sparse    2.39   34.143
6 wordspace: 99% sparse    0.64    9.143

在 50% 的稀疏度下,效率的变化不是很显着,但在 90% 的稀疏度下,wordspace 慢了 1.6 倍,而在 99% 的稀疏度下,它慢了近 10 倍!

将此性能与方阵进行比较:

M50.square <- rsparsematrix(1000, 1000, density = 0.5)
tM50.square <- t(M50.square)
M90.square <- rsparsematrix(1000, 1000, density = 0.1)
tM90.square <- t(M90.square)

benchmark(
 "cosSparse: square, 50% sparse" = cosSparse(M50.square),
 "wordspace: square, 50% sparse" = dist.matrix(tM50.square, byrow = TRUE),
 "cosSparse: square, 90% sparse" = cosSparse(M90.square),
 "wordspace: square, 90% sparse" = dist.matrix(tM90.square, byrow = TRUE),
 replications = 5, columns = c("test", "elapsed", "relative"))

cosSparse 在稀疏度为 50% 时略快,在稀疏度为 90% 时几乎快两倍!

                           test elapsed relative
1 cosSparse: square, 50% sparse    2.12    9.217
3 cosSparse: square, 90% sparse    0.23    1.000
2 wordspace: square, 50% sparse    2.15    9.348
4 wordspace: square, 90% sparse    0.40    1.739

请注意,wordspace::dist.matrixqlcMatrix::cosSparse 具有更多的边缘情况检查,并且还允许通过 R 中的 openmp 进行并行化。此外,wordspace::dist.matrix 支持欧几里德和杰卡德距离测量,尽管这些要慢得多。该软件包中内置了许多其他方便的功能。

就是说,如果您只需要余弦相似度,并且您的矩阵稀疏度 >50%,并且您正在计算 tall 方法,cosSparse 应该是首选工具。