Spark 将 Array[Array[Any]] 的结果写入文件

Spark write result of Array[Array[Any]] to file

我有如下示例的输入

3070811,1963,1096,,"US","CA",,1,
3022811,1963,1096,,"US","CA",,1,56
3033811,1963,1096,,"US","CA",,1,23

用 0 替换空字符后,我试图将结果写入文本文件,我得到了

scala> result.saveAsTextFile("data/result")
<console>:34: error: value saveAsTextFile is not a member of Array[Array[Any]]
              result.saveAxtFile("data/result")

这是解决方案

scala> val file2 = sc.textFile("data/file.txt")
scala> val mapper = file2.map(x => x.split(",",-1))
scala> val result = mapper.map(x => x.map(x => if(x.isEmpty) 0 else x)).collect()
result: Array[Array[Any]] = Array(Array(3070811, 1963, 1096, 0, "US", "CA", 0, 1, 0), Array(3022811, 1963, 1096, 0, "US", "CA", 0, 1, 56), Array(3033811, 1963, 1096, 0, "US", "CA", 0, 1, 23))
scala> result.saveAsTextFile("data/result")
<console>:34: error: value saveAsTextFile is not a member of Array[Array[Any]]
              result.saveAsTextFile("data/result")

我也试过关注,也失败了

scala> val output = result.map(x => (x(0),x(1),x(2),x(3), x(4), x(5), x(7), x(8)))
output: Array[(Any, Any, Any, Any, Any, Any, Any, Any)] = Array((3070811,1963,1096,0,"US","CA",1,0), (3022811,1963,1096,0,"US","CA",1,56), (3033811,1963,1096,0,"US","CA",1,23))

scala> output.saveAsTextFile("data/output")
<console>:36: error: value saveAsTextFile is not a member of Array[(Any, Any, Any, Any, Any, Any, Any, Any)]
              output.saveAsTextFile("data/output")

然后添加了以下内容,但也失败了

scala> output.mapValues(_.toList).saveAsTextFile("data/output")
<console>:36: error: value mapValues is not a member of Array[(Any, Any, Any, Any, Any, Any, Any, Any)]
              output.mapValues(_.toList).saveAsTextFile("data/output")

如何在控制台或结果文件中查看结果或输出变量的内容。这里缺少一些基本的东西。

更新 1

根据 Shankar Koirala 的说法,我已经删除了 .collect,然后执行了保存。

scala> val result = mapper.map(x => x.map(x => if(x.isEmpty) 0 else x))

这导致了这个输出

[Ljava.lang.Object;@7a1167b6
[Ljava.lang.Object;@60d86d2f
[Ljava.lang.Object;@20e85a55

更新1.a

选择了更新的答案,它给出了正确的数据

scala> val result = mapper.map(x => x.map(x => if(x.isEmpty) 0 else x).mkString(","))
result: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[29] at map at <console>:31

scala> result.saveAsTextFile("data/mkstring")

结果

3070811,1963,1096,0,"US","CA",0,1,0
3022811,1963,1096,0,"US","CA",0,1,56
3033811,1963,1096,0,"US","CA",0,1,23

更新 2

scala> val output = result.map(x => (x(0),x(1),x(2),x(3), x(4), x(5), x(7), x(8)))
output: org.apache.spark.rdd.RDD[(Any, Any, Any, Any, Any, Any, Any, Any)] = MapPartitionsRDD[27] at map at <console>:33

scala> output.saveAsTextFile("data/newOutPut")

我得到了这个结果

(3070811,1963,1096,0,"US","CA",1,0)
(3022811,1963,1096,0,"US","CA",1,56)
(3033811,1963,1096,0,"US","CA",1,23)

下面的代码returnsArray[Array[Any]]

val result = mapper.map(x => x.map(x => if(x.isEmpty) 0 else x)).collect()

由于Array

中没有方法saveAsTextFile

它在 RDD 中可用,因此您不需要收集输出

val result = mapper.map(x => x.map(x => if(x.isEmpty) 0 else x))

使用mkstring()转换成字符串写入文件

val result = mapper.map(x => x.map(x => if(x.isEmpty) 0 else x).mkString(","))

你也应该停止使用 collect(),它会将所有数据带到驱动程序,如果数据很大,这可能会导致内存问题。

希望对您有所帮助!