如何将包含可解析字段的字符串添加到可以添加到数据框的列中

How do I add a character string containing parseable fields into columns that can be added to a dataframe

我有一个数据框。在数据框的每一行中,最后一列是一个字符串(名为 data_listing)。 data_listing 字符串本身就是一系列用逗号分隔的 key:value 对。这是其中一个字符串的示例:

> data_listing[1:2]
[1] "id:4006422,memberId:2932850,price:999,make:Chevrolet,model:Cobalt,makeYear:2009,trim:LT,mileage:142000,sellerType:For Sale By Owner,dealerOptions:null,index:2"                                                                                                                                                                                                                                                                               
[2] "id:3987513,memberId:67473,price:26799,make:Audi,model:S5,makeYear:2013,trim:Prestige,mileage:44673,sellerType:Dealership,dealerOptions:{options:{VDPcarousel:true,allowUsed:true,calculator:true,carFaxIntegration:true,featuredCarousel:true,feed:true,homepageSpotlight:0,inlineSpotlight:11,limit:-1,map:true,monsterAds:true,pop:2,priceReduced:true,refresh:7,wrap:true,chat:false,inventoryComparison:true,standardFeatured:3}},index:3"

我想在数据框中为 data_listing 字符串中的每个值创建一列。每列将使用键值作为其名称。

如果我运行strsplit(data_listing, ","),那么我得到一个字符串列表。每个列表元素包含一个字符向量 "key:value" 对。

我犹豫是否要编写一个 for 循环来 grep 每个子列表元素并将值添加到原始数据框中的各个列,但这是我能弄清楚如何执行此操作的唯一方法。

我查看了转换和 tidyr::separate(),但这些有助于 greping 字符串中的单个项目,而不是 28 个值。

你会如何解决这个问题?

我会这样做:

data_listing <- c("id:4006422,memberId:2932850,price:999,make:Chevrolet,model:Cobalt,makeYear:2009,trim:LT,mileage:142000,sellerType:For Sale By Owner,dealerOptions:null,index:2",
                  "id:3987513,memberId:67473,price:26799,make:Audi,model:S5,makeYear:2013,trim:Prestige,mileage:44673,sellerType:Dealership,dealerOptions:{options:{VDPcarousel:true,allowUsed:true,calculator:true,carFaxIntegration:true,featuredCarousel:true,feed:true,homepageSpotlight:0,inlineSpotlight:11,limit:-1,map:true,monsterAds:true,pop:2,priceReduced:true,refresh:7,wrap:true,chat:false,inventoryComparison:true,standardFeatured:3}},index:3")

library(tidyverse)

# custom fxn for use on a single element in data_listing
parser <- function(x) {
    strsplit(x, ",", ) %>%
        unlist %>%
        as.tibble %>%
        separate(value, c("colnames", "values")) %>%
        spread(colnames, values)
}

map_dfr(data_listing, parser) # apply to each element then rbind() together

# console ...
# A tibble: 2 x 28
dealerOptions      id index      make makeYear memberId mileage  model price
<chr>   <chr> <chr>     <chr>    <chr>    <chr>   <chr>  <chr> <chr>
1          null 4006422     2 Chevrolet     2009  2932850  142000 Cobalt   999
2       options 3987513     3      Audi     2013    67473   44673     S5 26799
# ... with 19 more variables: sellerType <chr>, trim <chr>, allowUsed <chr>,
#   calculator <chr>, carFaxIntegration <chr>, chat <chr>, featuredCarousel <chr>,
#   feed <chr>, homepageSpotlight <chr>, inlineSpotlight <chr>,
#   inventoryComparison <chr>, limit <chr>, map <chr>, monsterAds <chr>, pop <chr>,
#   priceReduced <chr>, refresh <chr>, standardFeatured <chr>, wrap <chr>