如何从管道中提取词汇

How to extract vocabulary from Pipeline

我可以通过以下方式从 CountVecotizerModel 中提取词汇

fl = StopWordsRemover(inputCol="words", outputCol="filtered")
df = fl.transform(df)
cv = CountVectorizer(inputCol="filtered", outputCol="rawFeatures")
model = cv.fit(df)

print(model.vocabulary)

以上代码将打印带有索引的词汇列表。

现在我已经创建了上面代码的管道如下:

rm_stop_words = StopWordsRemover(inputCol="words", outputCol="filtered")
count_freq = CountVectorizer(inputCol=rm_stop_words.getOutputCol(), outputCol="rawFeatures")

pipeline = Pipeline(stages=[rm_stop_words, count_freq])
model = pipeline.fit(dfm)
df = model.transform(dfm)

print(model.vocabulary) # This won't work as it's not CountVectorizerModel

会抛出如下错误

print(len(model.vocabulary))

AttributeError: 'PipelineModel' object has no attribute 'vocabulary'

那么如何从管道中提取模型属性呢?

与任何其他阶段属性一样,提取 stages:

stages = model.stages

找到您感兴趣的(-s):

from pyspark.ml.feature import CountVectorizerModel

vectorizers = [s for s in stages if isinstance(s, CountVectorizerModel)]

并获取所需的字段:

[v.vocabulary for v in vectorizers]