R - 如何将数据框嵌套在并行核心中的一组上

R - how to nest data frame over a group in parallel cores

知道如何 运行 在并行内核中执行以下操作吗?

库和示例数据

libs <- c("plyr", "dplyr", "tidyr")
sapply(libs, require, character.only = T)

set.seed(1)
df <- data.frame(id = sample(1:10, 100000, TRUE), value = runif(100000))

对 运行 并行核心的操作:

df %>% 
  group_by(id) %>% 
  nest()

如有任何帮助,我们将不胜感激!

使用多个内核简单地嵌套一个 data.frame 效率不高。所以我假设您想执行一些其他计算。下面的示例计算 summary,每个组 ID 将有多个值。

multidplyr包方便这种东西。

# replace plyr with multidplyr
libs <- c("dplyr", "tidyr",'multidplyr')
devtools::install_github("hadley/multidplyr")
sapply(libs, require, character.only = T)

set.seed(1)
df <- data.frame(id = sample(1:10, 100000, TRUE), 
                 value = runif(100000))%>%as.tbl

# first the single core solution. No need to nest, 
# since group_by%>%do() automatically nests.
x<-df%>% 
  group_by(id)%>%
  # nest()%>%
  do(stat_summary=summary(.$value)%>%as.matrix%>%t%>%data.frame%>%as.tbl)%>%
  ungroup  

# next, multiple core solution
n_cores<-2
cl<-multidplyr::create_cluster(n_cores)
# you have to load the packages into each cluster
cluster_library(cl,c('dplyr','tidyr')) 
df_mp<-df%>%multidplyr::partition(cluster = cl,id) # group by id

x_mp<-df_mp%>% 
  do(stat_summary=summary(.$value)%>%as.matrix%>%t%>%data.frame%>%as.tbl)%>%
  collect()%>%
  ungroup

结果匹配。除非您进行的计算比将数据加载到每个不同的进程慢,否则您可能不会加快速度。

all.equal(unnest(x_mp),unnest(x))
x_mp

TRUE
# A tibble: 10 x 2
      id     stat_summary
   <int>           <list>
 1     3 <tibble [1 x 6]>
 2     5 <tibble [1 x 6]>
 3     6 <tibble [1 x 6]>
 4     7 <tibble [1 x 6]>
 5     1 <tibble [1 x 6]>
 6     2 <tibble [1 x 6]>
 7     4 <tibble [1 x 6]>
 8     8 <tibble [1 x 6]>
 9     9 <tibble [1 x 6]>
10    10 <tibble [1 x 6]>