RandomForestRegressor 和 feature_importances_ 错误

RandomForestRegressor and feature_importances_ error

我正在努力从我的 RandomForestRegressor 中提取特征重要性,我得到:

AttributeError: 'GridSearchCV' object has no attribute 'feature_importances_'.

谁知道为什么没有属性?根据文档应该存在这个属性?

完整代码:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

#Running a RandomForestRegressor GridSearchCV to tune the model.
parameter_candidates = {
    'n_estimators' : [650, 700, 750, 800],
    'min_samples_leaf' : [1, 2, 3],
    'max_depth' : [10, 11, 12],
    'min_samples_split' : [2, 3, 4, 5, 6]
}

RFR_regr = RandomForestRegressor()
CV_RFR_regr = GridSearchCV(estimator=RFR_regr, param_grid=parameter_candidates, n_jobs=5, verbose=2)
CV_RFR_regr.fit(X_train, y_train)

#Predict with testing set
y_pred = CV_RFR_regr.predict(X_test)

#Extract feature importances
importances = CV_RFR_regr.feature_importances_

您正在尝试使用 GridSearchCV 对象上的属性。它不在那里。您实际需要做的是访问完成网格搜索的估算器。

通过以下方式访问属性:

importances = CV_RFR_regr.best_estimator_.feature_importances_

///

clf = 随机森林分类器() clf.fit(df.drop('name', 轴=1), df['name'])

plt.figure(图大小=(10,10)) plt.bar(df.drop('name', axis=1).columns, height=clf.feature_importances_, bottom = 0, width=0.8) plt.xticks(旋转=80)

hight_rate_col = df.drop('name', 轴=1).列[clf.feature_importances_ > 0.1] x_train_rate, x_test_rate, y_train_rate, y_test_rate = train_test_split(df[hight_rate_col], df['name'])

///