通过收集多列来整理数据集?

Tidying dataset by gathering multiple columns?

我想通过这种方式处理数据来整理数据集:

age gender  education       previous_comp_exp   tutorial_time   qID.1    time_taken.1   qID.2    time_taken.2   
18  Male    Undergraduate   casual gamer        62.17926        sor9     39.61206       sor8     19.4892
24  Male    Undergraduate   casual gamer        85.01288        sor9     50.92343       sor8     16.15616

变成这样:

age gender  education       previous_comp_exp   tutorial_time   qID      time_taken 
18  Male    Undergraduate   casual gamer        62.17926        sor9     39.61206       
18  Male    Undergraduate   casual gamer        62.17926        sor8     19.4892
24  Male    Undergraduate   casual gamer        85.01288        sor9     50.92343       
24  Male    Undergraduate   casual gamer        85.01288        sor8     16.15616

我已经尝试过 gather(),但我只能让它与一列一起工作,而且我不断收到此警告:

Warning message:attributes are not identical across measure variables; they will be dropped

有什么想法吗?

来自 data.tablemelt(参见 ?patterns):

library(data.table)

melt(setDT(df), measure = patterns("^qID", "^time_taken"),
     value.name = c("qID", "time_taken"))

结果:

   age gender     education previous_comp_exp tutorial_time variable  qID time_taken
1:  18   Male Undergraduate      casual_gamer      62.17926        1 sor9   39.61206
2:  24   Male Undergraduate      casual_gamer      85.01288        1 sor9   50.92343
3:  18   Male Undergraduate      casual_gamer      62.17926        2 sor8   19.48920
4:  24   Male Undergraduate      casual_gamer      85.01288        2 sor8   16.15616

tidyr:

library(dplyr)
library(tidyr)

df %>%
  gather(variable, value, qID.1:time_taken.2) %>%
  mutate(variable = sub("\.\d$", "", variable)) %>%
  group_by(variable) %>%
  mutate(ID = row_number()) %>%
  spread(variable, value, convert = TRUE) %>%
  select(-ID)

结果:

# A tibble: 4 x 7
    age gender     education previous_comp_exp tutorial_time   qID time_taken
  <int> <fctr>        <fctr>            <fctr>         <dbl> <chr>      <dbl>
1    18   Male Undergraduate      casual_gamer      62.17926  sor9   39.61206
2    18   Male Undergraduate      casual_gamer      62.17926  sor8   19.48920
3    24   Male Undergraduate      casual_gamer      85.01288  sor9   50.92343
4    24   Male Undergraduate      casual_gamer      85.01288  sor8   16.15616

注:

对于 tidyr 方法,convert=TRUE 用于将 time_taken 转换回 numeric,因为它在 gathered 时被强制转换为字符qID 列。

数据:

df = structure(list(age = c(18L, 24L), gender = structure(c(1L, 1L
), .Label = "Male", class = "factor"), education = structure(c(1L, 
1L), .Label = "Undergraduate", class = "factor"), previous_comp_exp = structure(c(1L, 
1L), .Label = "casual_gamer", class = "factor"), tutorial_time = c(62.17926, 
85.01288), qID.1 = structure(c(1L, 1L), .Label = "sor9", class = "factor"), 
    time_taken.1 = c(39.61206, 50.92343), qID.2 = structure(c(1L, 
    1L), .Label = "sor8", class = "factor"), time_taken.2 = c(19.4892, 
    16.15616)), .Names = c("age", "gender", "education", "previous_comp_exp", 
"tutorial_time", "qID.1", "time_taken.1", "qID.2", "time_taken.2"
), class = "data.frame", row.names = c(NA, -2L))

在 base R 中,您可以使用强大的 reshape 在单行语句中将数据从宽格式转换为长格式:

   reshape(dx,direction="long",
        varying=list(grep("qID",colnames(dx)),
                     grep("time_taken",colnames(dx))),
        v.names=c("qID","time_taken"))

     age gender     education previous_comp_exp tutorial_time time  qID time_taken id
1.1  18   Male Undergraduate      casual_gamer      62.17926    1 sor9   39.61206  1
2.1  24   Male Undergraduate      casual_gamer      85.01288    1 sor9   50.92343  2
1.2  18   Male Undergraduate      casual_gamer      62.17926    2 sor8   19.48920  1
2.2  24   Male Undergraduate      casual_gamer      85.01288    2 sor8   16.15616  2