keras tensorboard:在同一图中绘制火车和验证标量
keras tensorboard: plot train and validation scalars in a same figure
所以我在keras中使用tensorboard。在 tensorflow 中,可以对训练标量和验证标量使用两个不同的摘要编写器,以便 tensorboard 可以将它们绘制在同一个图中。类似于
中的图
有没有办法在 keras 中做到这一点?
谢谢。
要使用单独的编写器处理验证日志,您可以编写一个自定义回调来环绕原始 TensorBoard
方法。
import os
import tensorflow as tf
from keras.callbacks import TensorBoard
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
# Make the original `TensorBoard` log to a subdirectory 'training'
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
# Log the validation metrics to a separate subdirectory
self.val_log_dir = os.path.join(log_dir, 'validation')
def set_model(self, model):
# Setup writer for validation metrics
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
# Pop the validation logs and handle them separately with
# `self.val_writer`. Also rename the keys so that they can
# be plotted on the same figure with the training metrics
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
# Pass the remaining logs to `TensorBoard.on_epoch_end`
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
- 在
__init__
中设置了两个子目录用于训练和验证日志
- 在
set_model
中,为验证日志创建了编写器 self.val_writer
- 在
on_epoch_end
中,验证日志与训练日志分开并写入文件 self.val_writer
以MNIST数据集为例:
from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10,
validation_data=(x_test, y_test),
callbacks=[TrainValTensorBoard(write_graph=False)])
然后您可以在 TensorBoard 中的同一个图形上可视化这两条曲线。
编辑: 我修改了 class 一点,以便它可以与急切执行一起使用。
最大的变化是我在下面的代码中使用了tf.keras
。独立 Keras 中的 TensorBoard
回调似乎还不支持 eager 模式。
import os
import tensorflow as tf
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.python.eager import context
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
self.val_log_dir = os.path.join(log_dir, 'validation')
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
def set_model(self, model):
if context.executing_eagerly():
self.val_writer = tf.contrib.summary.create_file_writer(self.val_log_dir)
else:
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def _write_custom_summaries(self, step, logs=None):
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if 'val_' in k}
if context.executing_eagerly():
with self.val_writer.as_default(), tf.contrib.summary.always_record_summaries():
for name, value in val_logs.items():
tf.contrib.summary.scalar(name, value.item(), step=step)
else:
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, step)
self.val_writer.flush()
logs = {k: v for k, v in logs.items() if not 'val_' in k}
super(TrainValTensorBoard, self)._write_custom_summaries(step, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
思路是一样的--
- 检查
TensorBoard
回调的源代码
- 查看设置编写器的作用
- 在此自定义回调中做同样的事情
同样,您可以使用MNIST数据进行测试,
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.train import AdamOptimizer
tf.enable_eager_execution()
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = y_train.astype(int)
y_test = y_test.astype(int)
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer=AdamOptimizer(), metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10,
validation_data=(x_test, y_test),
callbacks=[TrainValTensorBoard(write_graph=False)])
如果您使用的是 TensorFlow 2.0,您现在默认使用 Keras TensorBoard 回调获取此信息。 (将 TensorFlow 与 Keras 结合使用时,请确保您使用的是 tensorflow.keras。)
查看本教程:
所以我在keras中使用tensorboard。在 tensorflow 中,可以对训练标量和验证标量使用两个不同的摘要编写器,以便 tensorboard 可以将它们绘制在同一个图中。类似于
中的图有没有办法在 keras 中做到这一点?
谢谢。
要使用单独的编写器处理验证日志,您可以编写一个自定义回调来环绕原始 TensorBoard
方法。
import os
import tensorflow as tf
from keras.callbacks import TensorBoard
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
# Make the original `TensorBoard` log to a subdirectory 'training'
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
# Log the validation metrics to a separate subdirectory
self.val_log_dir = os.path.join(log_dir, 'validation')
def set_model(self, model):
# Setup writer for validation metrics
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
# Pop the validation logs and handle them separately with
# `self.val_writer`. Also rename the keys so that they can
# be plotted on the same figure with the training metrics
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
# Pass the remaining logs to `TensorBoard.on_epoch_end`
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
- 在
__init__
中设置了两个子目录用于训练和验证日志 - 在
set_model
中,为验证日志创建了编写器self.val_writer
- 在
on_epoch_end
中,验证日志与训练日志分开并写入文件self.val_writer
以MNIST数据集为例:
from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10,
validation_data=(x_test, y_test),
callbacks=[TrainValTensorBoard(write_graph=False)])
然后您可以在 TensorBoard 中的同一个图形上可视化这两条曲线。
编辑: 我修改了 class 一点,以便它可以与急切执行一起使用。
最大的变化是我在下面的代码中使用了tf.keras
。独立 Keras 中的 TensorBoard
回调似乎还不支持 eager 模式。
import os
import tensorflow as tf
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.python.eager import context
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
self.val_log_dir = os.path.join(log_dir, 'validation')
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
def set_model(self, model):
if context.executing_eagerly():
self.val_writer = tf.contrib.summary.create_file_writer(self.val_log_dir)
else:
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def _write_custom_summaries(self, step, logs=None):
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if 'val_' in k}
if context.executing_eagerly():
with self.val_writer.as_default(), tf.contrib.summary.always_record_summaries():
for name, value in val_logs.items():
tf.contrib.summary.scalar(name, value.item(), step=step)
else:
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, step)
self.val_writer.flush()
logs = {k: v for k, v in logs.items() if not 'val_' in k}
super(TrainValTensorBoard, self)._write_custom_summaries(step, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
思路是一样的--
- 检查
TensorBoard
回调的源代码 - 查看设置编写器的作用
- 在此自定义回调中做同样的事情
同样,您可以使用MNIST数据进行测试,
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.train import AdamOptimizer
tf.enable_eager_execution()
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = y_train.astype(int)
y_test = y_test.astype(int)
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer=AdamOptimizer(), metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10,
validation_data=(x_test, y_test),
callbacks=[TrainValTensorBoard(write_graph=False)])
如果您使用的是 TensorFlow 2.0,您现在默认使用 Keras TensorBoard 回调获取此信息。 (将 TensorFlow 与 Keras 结合使用时,请确保您使用的是 tensorflow.keras。)
查看本教程: