如何让 VectorAssembler 不压缩数据?
How to make VectorAssembler do not compress data?
我想使用 VectorAssembler
将多列转换为一列,但默认情况下数据是压缩的,没有其他选项。
val arr2= Array((1,2,0,0,0),(1,2,3,0,0),(1,2,4,5,0),(1,2,2,5,6))
val df=sc.parallelize(arr2).toDF("a","b","c","e","f")
val colNames=Array("a","b","c","e","f")
val assembler = new VectorAssembler()
.setInputCols(colNames)
.setOutputCol("newCol")
val transDF= assembler.transform(df).select(col("newCol"))
transDF.show(false)
输入为:
+---+---+---+---+---+
| a| b| c| e| f|
+---+---+---+---+---+
| 1| 2| 0| 0| 0|
| 1| 2| 3| 0| 0|
| 1| 2| 4| 5| 0|
| 1| 2| 2| 5| 6|
+---+---+---+---+---+
结果是:
+---------------------+
|newCol |
+---------------------+
|(5,[0,1],[1.0,2.0]) |
|[1.0,2.0,3.0,0.0,0.0]|
|[1.0,2.0,4.0,5.0,0.0]|
|[1.0,2.0,2.0,5.0,6.0]|
+---------------------+
我的预期结果是:
+---------------------+
|newCol |
+---------------------+
|[1.0,2.0,0.0,0.0,0.0]|
|[1.0,2.0,3.0,0.0,0.0]|
|[1.0,2.0,4.0,5.0,0.0]|
|[1.0,2.0,2.0,5.0,6.0]|
+---------------------+
我应该怎么做才能得到预期的结果?
如果你真的想将所有向量强制转换为它们的密集表示,你可以使用用户定义函数来实现:
val toDense = udf((v: org.apache.spark.ml.linalg.Vector) => v.toDense)
transDF.select(toDense($"newCol")).show
+--------------------+
| UDF(newCol)|
+--------------------+
|[1.0,2.0,0.0,0.0,...|
|[1.0,2.0,3.0,0.0,...|
|[1.0,2.0,4.0,5.0,...|
|[1.0,2.0,2.0,5.0,...|
+--------------------+
我想使用 VectorAssembler
将多列转换为一列,但默认情况下数据是压缩的,没有其他选项。
val arr2= Array((1,2,0,0,0),(1,2,3,0,0),(1,2,4,5,0),(1,2,2,5,6))
val df=sc.parallelize(arr2).toDF("a","b","c","e","f")
val colNames=Array("a","b","c","e","f")
val assembler = new VectorAssembler()
.setInputCols(colNames)
.setOutputCol("newCol")
val transDF= assembler.transform(df).select(col("newCol"))
transDF.show(false)
输入为:
+---+---+---+---+---+
| a| b| c| e| f|
+---+---+---+---+---+
| 1| 2| 0| 0| 0|
| 1| 2| 3| 0| 0|
| 1| 2| 4| 5| 0|
| 1| 2| 2| 5| 6|
+---+---+---+---+---+
结果是:
+---------------------+
|newCol |
+---------------------+
|(5,[0,1],[1.0,2.0]) |
|[1.0,2.0,3.0,0.0,0.0]|
|[1.0,2.0,4.0,5.0,0.0]|
|[1.0,2.0,2.0,5.0,6.0]|
+---------------------+
我的预期结果是:
+---------------------+
|newCol |
+---------------------+
|[1.0,2.0,0.0,0.0,0.0]|
|[1.0,2.0,3.0,0.0,0.0]|
|[1.0,2.0,4.0,5.0,0.0]|
|[1.0,2.0,2.0,5.0,6.0]|
+---------------------+
我应该怎么做才能得到预期的结果?
如果你真的想将所有向量强制转换为它们的密集表示,你可以使用用户定义函数来实现:
val toDense = udf((v: org.apache.spark.ml.linalg.Vector) => v.toDense)
transDF.select(toDense($"newCol")).show
+--------------------+
| UDF(newCol)|
+--------------------+
|[1.0,2.0,0.0,0.0,...|
|[1.0,2.0,3.0,0.0,...|
|[1.0,2.0,4.0,5.0,...|
|[1.0,2.0,2.0,5.0,...|
+--------------------+