将文件导入数组,python
import a file into an array, python
我需要将文件导入数组。文件是这样的
2017-12-21T14:49:17.518Z
2017-12-21T14:50:49.723Z
2017-12-21T14:50:54.028Z
2017-12-21T14:50:54.343Z
2017-12-21T14:50:59.084Z
2017-12-21T14:50:59.399Z
2017-12-21T14:51:04.142Z
2017-12-21T14:51:04.457Z
2017-12-21T14:51:09.204Z
2017-12-21T14:51:09.521Z
2017-12-21T14:51:14.261Z
2017-12-21T14:51:14.579Z
2017-12-21T14:51:19.326Z
2017-12-21T14:51:19.635Z
2017-12-21T14:51:24.376Z
2017-12-21T14:51:24.691Z
2017-12-21T14:51:29.435Z
2017-12-21T14:51:29.750Z
2017-12-21T14:51:34.498Z
2017-12-21T14:51:34.813Z
2017-12-21T14:51:39.553Z
2017-12-21T14:51:39.868Z
2017-12-21T14:51:44.612Z
2017-12-21T14:51:44.927Z
2017-12-21T14:51:49.675Z
2017-12-21T14:51:49.990Z
2017-12-21T14:51:54.738Z
2017-12-21T14:51:55.042Z
。我需要将它导入到这样的列表中
times = [
'2017-12-21T14:49:17.518Z',
'2017-12-21T14:50:49.723Z',
'2017-12-21T14:50:54.028Z',
'2017-12-21T14:50:54.343Z',
'2017-12-21T14:50:59.084Z',
'2017-12-21T14:50:59.399Z',
'2017-12-21T14:51:04.142Z',
'2017-12-21T14:51:04.457Z',
'2017-12-21T14:51:09.204Z',
'2017-12-21T14:51:09.521Z',
'2017-12-21T14:51:14.261Z',
'2017-12-21T14:51:14.579Z',
'2017-12-21T14:51:19.326Z',
'2017-12-21T14:51:19.635Z',
'2017-12-21T14:51:24.376Z',
'2017-12-21T14:51:24.691Z',
'2017-12-21T14:51:29.435Z',
'2017-12-21T14:51:29.750Z',
'2017-12-21T14:51:34.498Z',
'2017-12-21T14:51:34.813Z'
]
现在,我不知道哪里做错了,我使用了代码
times = []
impo= open('checck.txt','r')
for line in impo.readline():
times.append(line)
但我不明白,我尝试使用
导出它
joinliens = ''.join(times)
open('ext.txt', 'w').write(joinliens)
但我无法获取正在扩展的列表。在命令行中,如果我打印出来,我会得到一些东西,但我无法导出它
您应该使用 readlines()
而不是 readline()
- 注意结尾 s:
for line in impo.readlines():
times.append(line)
此外,当 saving/writing 出来时,执行此操作:
joinliens = ''.join(times)
with open('ext.txt', 'w') as f:
f.write(joinliens)
impo = open('checck.txt', 'r')
times = [line.strip() for line in impo.readlines()]
for line in impo.readline():
没有用,因为它读取了 one 行并遍历了行中的每个 character。
您可能想试试 pandas
:
import pandas as pd
df = pd.read_csv('file.csv', header=None, names=['times'])
times = df['times'].tolist() # output as list
df['times'] = pd.to_datetime(df['times']) # output as datetime series
我需要将文件导入数组。文件是这样的
2017-12-21T14:49:17.518Z
2017-12-21T14:50:49.723Z
2017-12-21T14:50:54.028Z
2017-12-21T14:50:54.343Z
2017-12-21T14:50:59.084Z
2017-12-21T14:50:59.399Z
2017-12-21T14:51:04.142Z
2017-12-21T14:51:04.457Z
2017-12-21T14:51:09.204Z
2017-12-21T14:51:09.521Z
2017-12-21T14:51:14.261Z
2017-12-21T14:51:14.579Z
2017-12-21T14:51:19.326Z
2017-12-21T14:51:19.635Z
2017-12-21T14:51:24.376Z
2017-12-21T14:51:24.691Z
2017-12-21T14:51:29.435Z
2017-12-21T14:51:29.750Z
2017-12-21T14:51:34.498Z
2017-12-21T14:51:34.813Z
2017-12-21T14:51:39.553Z
2017-12-21T14:51:39.868Z
2017-12-21T14:51:44.612Z
2017-12-21T14:51:44.927Z
2017-12-21T14:51:49.675Z
2017-12-21T14:51:49.990Z
2017-12-21T14:51:54.738Z
2017-12-21T14:51:55.042Z
。我需要将它导入到这样的列表中
times = [
'2017-12-21T14:49:17.518Z',
'2017-12-21T14:50:49.723Z',
'2017-12-21T14:50:54.028Z',
'2017-12-21T14:50:54.343Z',
'2017-12-21T14:50:59.084Z',
'2017-12-21T14:50:59.399Z',
'2017-12-21T14:51:04.142Z',
'2017-12-21T14:51:04.457Z',
'2017-12-21T14:51:09.204Z',
'2017-12-21T14:51:09.521Z',
'2017-12-21T14:51:14.261Z',
'2017-12-21T14:51:14.579Z',
'2017-12-21T14:51:19.326Z',
'2017-12-21T14:51:19.635Z',
'2017-12-21T14:51:24.376Z',
'2017-12-21T14:51:24.691Z',
'2017-12-21T14:51:29.435Z',
'2017-12-21T14:51:29.750Z',
'2017-12-21T14:51:34.498Z',
'2017-12-21T14:51:34.813Z'
]
现在,我不知道哪里做错了,我使用了代码
times = []
impo= open('checck.txt','r')
for line in impo.readline():
times.append(line)
但我不明白,我尝试使用
导出它joinliens = ''.join(times)
open('ext.txt', 'w').write(joinliens)
但我无法获取正在扩展的列表。在命令行中,如果我打印出来,我会得到一些东西,但我无法导出它
您应该使用 readlines()
而不是 readline()
- 注意结尾 s:
for line in impo.readlines():
times.append(line)
此外,当 saving/writing 出来时,执行此操作:
joinliens = ''.join(times)
with open('ext.txt', 'w') as f:
f.write(joinliens)
impo = open('checck.txt', 'r')
times = [line.strip() for line in impo.readlines()]
for line in impo.readline():
没有用,因为它读取了 one 行并遍历了行中的每个 character。
您可能想试试 pandas
:
import pandas as pd
df = pd.read_csv('file.csv', header=None, names=['times'])
times = df['times'].tolist() # output as list
df['times'] = pd.to_datetime(df['times']) # output as datetime series