Keras - TensorBoard 不保存日志文件
Keras - TensorBoard does not save the logs file
作为网络的例子,我用了第一个例子here
我想在这个网络上使用 tensorboard。在阅读了关于如何使用 TensorBoard 的 documentation 之后,我将这些命令添加到代码中:
from keras.callbacks import TensorBoard
TensorBoard("Directory path that contains the log files")
输出听起来正确:
Out[3]: <keras.callbacks.TensorBoard at 0x7f14730e79b0>
但是目录里什么都没有...
我做错了什么?
完整代码如下:
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.callbacks import TensorBoard
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
TensorBoard("Directory path that contains the log files")
您需要将回调传递给model.fit:
tb = TensorBoard('log_dir')
model.fit(x_train, y_train,
epochs=20,
batch_size=128,
callbacks=[tb])
作为网络的例子,我用了第一个例子here
我想在这个网络上使用 tensorboard。在阅读了关于如何使用 TensorBoard 的 documentation 之后,我将这些命令添加到代码中:
from keras.callbacks import TensorBoard
TensorBoard("Directory path that contains the log files")
输出听起来正确:
Out[3]: <keras.callbacks.TensorBoard at 0x7f14730e79b0>
但是目录里什么都没有...
我做错了什么?
完整代码如下:
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.callbacks import TensorBoard
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
TensorBoard("Directory path that contains the log files")
您需要将回调传递给model.fit:
tb = TensorBoard('log_dir')
model.fit(x_train, y_train,
epochs=20,
batch_size=128,
callbacks=[tb])