bigquery,"subtable" 可能吗?

bigquery, is a "subtable" possible?

在使用旧版 sql 的 bigquery 中,我创建了一个可怕的查询,returns 我在 2018 年 2 月 26 日发布的网站每天的访问量显示如下:

Row  date       name    release_date  visits_count
1    20180226   a_name  20180226      2179
2    20180227   a_name  20180226      9522
3    20180228   a_name  20180226      1593   
4    20180301   a_name  20180226      300    
...

我真正想要的是

Row  name    release   count_release  count_release+1  count_release_rest
1    a_name  20180226  2179           9522             1893  

因此,我想要发布日期的实际访问次数、发布日期后的第二天以及之后的所有次数应该相加。 我是 bigquery 的新手(也是 sql... 的新手)。有没有一种方法可以将我的第一个显示定义为 "subtable" 或类似的东西,以便我可以这样做,或者您会推荐什么方法?

您可以通过多种方式实现此功能。最简单的方法是将日期与案例语句进行比较。

select name, sum(case when date = relese_date then 1 else 0) as release_count, 
sum(case when date = DATE_ADD(relese_date,1,"DAY") then 1 else 0) as release_count1
sum(case when date > DATE_ADD(relese_date,1,"DAY") then 1 else 0) as release_count_other

以下适用于 BigQuery 标准 SQL

#standardSQL
WITH `project.dataset.table` AS (
  SELECT '20180226' date, 'a_name' name, '20180226' release_date, 2179 visits_count UNION ALL
  SELECT '20180227', 'a_name', '20180226', 9522 UNION ALL
  SELECT '20180228', 'a_name', '20180226', 1593 UNION ALL   
  SELECT '20180301', 'a_name', '20180226', 300  
)
SELECT name, release_date, 
  SUM(CASE WHEN date = release_date THEN visits_count END) count_release,
  SUM(CASE WHEN PARSE_DATE('%Y%m%d', date) = DATE_ADD(PARSE_DATE('%Y%m%d', release_date), INTERVAL 1 DAY) THEN visits_count END) count_release_next_day,
  SUM(CASE WHEN PARSE_DATE('%Y%m%d', date) > DATE_ADD(PARSE_DATE('%Y%m%d', release_date), INTERVAL 1 DAY) THEN visits_count END) count_release_rest
FROM `project.dataset.table`
GROUP BY name, release_date   

或以上可以"refactored"避免重复PARSE_DATE,这样查询看起来更紧凑,更容易管理

#standardSQL
WITH `project.dataset.table` AS (
  SELECT '20180226' date, 'a_name' name, '20180226' release_date, 2179 visits_count UNION ALL
  SELECT '20180227', 'a_name', '20180226', 9522 UNION ALL
  SELECT '20180228', 'a_name', '20180226', 1593 UNION ALL   
  SELECT '20180301', 'a_name', '20180226', 300  
)
SELECT name, release_date, 
  SUM(CASE WHEN date = release_date THEN visits_count END) count_release,
  SUM(CASE WHEN visit = release_next_day THEN visits_count END) count_release_next_day,
  SUM(CASE WHEN visit > release_next_day THEN visits_count END) count_release_rest
FROM `project.dataset.table`, 
UNNEST([STRUCT<visit DATE, release_next_day DATE>(
  PARSE_DATE('%Y%m%d', date), 
  DATE_ADD(PARSE_DATE('%Y%m%d', release_date), INTERVAL 1 DAY))]) x
GROUP BY name, release_date      

两种情况的结果都是

Row name    release_date    count_release   count_release_next_day  count_release_rest   
1   a_name  20180226        2179            9522                    1893