Python matplotlib - 图中的颜色代码 +ve 和 -ve 值

Python matplotlib - Color code +ve and -ve values in plot

我有一堆形状为 (1, 104) 的样本。所有样本都是整数(+ve、-ve 和 0),它们在 matplotlibimshow 函数中使用。下面是我创建的将它们显示为图像的函数。

def show_as_image(sample):
    bitmap = sample.reshape((13, 8))
    plt.figure()
    # this line needs changes.
    plt.imshow(bitmap, cmap='gray', interpolation='nearest')
    plt.colorbar()
    plt.show()

我需要 颜色代码 来自 sample 的正值和负值。 PS:取0为正。 如何更改我的代码?

您可以创建一个三维数组,为每个像素分配一个颜色代码。所以如果你想要黑色和白色,你将分别传递 (0,0,0)(1,1,1)。这样的事情应该有效:

def show_as_image(sample):
    bitmap = sample.reshape((13, 8))
    bitmap_colored = np.zeros((13,8,3))
    bitmap_colored[bitmap>=0] = [1,1,1] # black for values greater or equal to 0
    bitmap_colored[bitmap<0] = [0,0,0] # white for values less than 0
    plt.figure()
    plt.imshow(bitmap_colored, interpolation='nearest')
    plt.show()

例如:

>>> sample = np.random.randint(low=-10,high=10,size=(1,104))
>>> show_as_image(sample)

将输出如下内容:

您可以设置颜色编码的归一化,使其在数据的负绝对值和正绝对值之间均匀分布。使用中间带有浅色的颜色图可以帮助可视化值与零的距离。

import numpy as np
import matplotlib.pyplot as plt

def show_as_image(sample):
    bitmap = sample.reshape((13, 8))
    maxval = np.max(np.abs([bitmap.min(),bitmap.max()]))
    plt.figure()
    plt.imshow(bitmap, cmap='RdYlGn', interpolation='nearest',
               vmin=-maxval, vmax=maxval)
    plt.colorbar()
    plt.show()

sample=np.random.randn(1,104)
show_as_image(sample)

如果需要二进制映射,您可以将正值映射到例如1 负数为 0。

import numpy as np
import matplotlib.pyplot as plt

def show_as_image(sample):
    bitmap = sample.reshape((13, 8))
    bitmap[bitmap >= 0] = 1
    bitmap[bitmap < 0] = 0
    plt.figure()
    plt.imshow(bitmap, cmap='RdYlGn', interpolation='nearest',
               vmin=-.1, vmax=1.1)
    plt.show()

sample=np.random.randn(1,104)
show_as_image(sample)

在这种情况下,使用颜色条可能没有用。