线性回归代码
Linear Regression Code
我正在学习 Andrew Ng class 机器学习 并实现线性回归算法。
我的代码有什么问题?
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y);
J_history = zeros(num_iters, 1);
h = (X*theta)
for iter = 1:num_iters
theta(1,1) = theta(1,1)-(alpha/m)*sum((h-y).*X(:,1));
theta(2,1) = theta(2,1)-(alpha/m)*sum((h-y).*X(:,2));
J_history(iter) = computeCost(X, y, theta);
end
end
成本函数为:
function J = computeCost(X, y, theta)
m = length(y);
h = (X*theta)
J = (1/(2*m))*sum((h-y).^2)
end
J_history
的值不断增加。它给出了非常不正常的(大值),即比它应该的多 1000 倍。
您需要更新 for 循环中的 h
和 theta
,如下所示
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y);
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
h = ((X*theta)-y)'*X;
theta = theta - alpha*(1/m)*h';
J_history(iter) = computeCost(X, y, theta);
end
end
我正在学习 Andrew Ng class 机器学习 并实现线性回归算法。
我的代码有什么问题?
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y);
J_history = zeros(num_iters, 1);
h = (X*theta)
for iter = 1:num_iters
theta(1,1) = theta(1,1)-(alpha/m)*sum((h-y).*X(:,1));
theta(2,1) = theta(2,1)-(alpha/m)*sum((h-y).*X(:,2));
J_history(iter) = computeCost(X, y, theta);
end
end
成本函数为:
function J = computeCost(X, y, theta)
m = length(y);
h = (X*theta)
J = (1/(2*m))*sum((h-y).^2)
end
J_history
的值不断增加。它给出了非常不正常的(大值),即比它应该的多 1000 倍。
您需要更新 for 循环中的 h
和 theta
,如下所示
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y);
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
h = ((X*theta)-y)'*X;
theta = theta - alpha*(1/m)*h';
J_history(iter) = computeCost(X, y, theta);
end
end