假设策略:对于每个"bucket",从桶中抽取一个值

Hypothesis strategy: for each "bucket", draw one value from the bucket

我有以下方法在我的一个测试中生成随机数据:

import random

data_categories = {
    'a': [1, 2, 3],
    'b': [4, 5],
    'c': [6, 7, 8]
}

def make_record():
    return [random.choice(vals) for vals in data_categories.values()]

如何将其转换为假设策略?

这是我尝试使用 hypothesis.strategies.composite,但很难知道我是否正确使用它:

import hypothesis.strategies as hs

@hs.composite
def make_record(draw):
    return [draw(hs.sampled_from(vals)) for vals in data_categories.values()]

您的尝试基本上是正确的,除了字典迭代顺序可能不可靠 - 因此示例可能无法正确重现或缩小。我会把它写成内联,如:

my_strategy = hs.tuples(
    *[hs.sampled_from(data_categories[k]) for k in sorted(data_categories)]
).map(list)