在 r 中制作两个百分比变量的分组条形图
Make a grouped Bar chart of two percentage variables in r
我想制作一个包含两个二项式变量的分组条形图。
我记录了橡树叶子顶部 (P.A) 和底部 (U.PA) 被白粉病感染的情况。它们被组织为存在(用“1”表示)或不存在(用“0”表示)。
This is an image showing the top of my dataframe.
它由日期、叶数、植物 ID 和两个二项式变量 P.A 和 U.PA 组织。
我可以将它们分别绘制在两个条形图中。
Percentage of leaves with Powdery mildew infection upon the upper surface of the leafs
Percentage of leaves with powdery mildew upon the under surface of the leafs
使用此代码:
plot(DFP$P.A ~ DFP$Date, ylim=c(0,0.2), main= "Leaves infected with powdery mildew on the upper surface", ylab = "Percentage of leaves infected", xlab= "Date")
plot(DFP$L.PA ~ DFP$Date, ylim=c(0,0.2), main= "Leaves infected with powdery mildew on the lower surface", ylab = "Percentage of leaves infected", xlab= "Date")
我基本上想将以上两张图片重新合二为一。因此按日期分组 U.PA 和 P.A 的叶子总数中被感染的叶子百分比,但在同一张图表上。
我看到网站上有一些关于分组条形图的主题,但我无法将其应用于我的数据集,可能是因为它是二项式数据?我为自己对 r 的无知表示歉意,但我正在慢慢学习。
如有任何帮助,我们将不胜感激!
我使用 dput(DFY) 作为完整数据的数据子集不适合:
structure(list(Date = structure(c(1532995200, 1532995200, 1530662400,
1530662400, 1532995200, 1531785600, 1530662400, 1532995200, 1531785600,
1531785600, 1531785600, 1529884800, 1531785600, 1531785600, 1529884800,
1532995200, 1532995200, 1529884800, 1530662400, 1531785600, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1531785600, 1532995200,
1531785600, 1531785600, 1532995200, 1532995200, 1530662400, 1532995200,
1530662400, 1530662400, 1532995200, 1531785600, 1529884800, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1532995200, 1529884800,
1531785600, 1530662400, 1530662400, 1532995200, 1529884800, 1530662400,
1530662400, 1531785600, NA, 1531785600, 1530662400, 1531785600,
1529884800, 1532995200, 1531785600, 1532995200, 1532995200, 1532995200,
1532995200, 1531785600, 1531785600, 1530662400, 1532995200, 1530662400,
1532995200, 1531785600, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1532995200, 1531785600, 1532995200, 1532995200, 1532995200,
1531785600, 1532995200, 1532995200, 1532995200, 1531785600, 1531785600,
1532995200, 1532995200, 1531785600, 1529884800, 1531785600, 1531785600,
1531785600, 1530662400, 1532995200, 1530662400, 1532995200, 1531785600,
1531785600, 1530662400, 1531785600, 1530662400, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1529884800, 1530662400, 1531785600,
1531785600, 1532995200, 1530662400, 1531785600, 1531785600, 1532995200,
1531785600, 1529884800, 1529884800, 1532995200, 1531785600, 1532995200,
1532995200, 1532995200, 1530662400, 1530662400, 1532995200, 1530662400,
1531785600, 1530662400, 1532995200, 1529884800, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1531785600, 1532995200, 1530662400,
1531785600, 1530662400, 1532995200, 1530662400, 1530662400, 1531785600,
1532995200, 1532995200, 1530662400, 1532995200, 1530662400, 1532995200,
1532995200, 1530662400, 1531785600, 1532995200, 1532995200, 1530662400,
1532995200, 1532995200, 1531785600, 1530662400, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1532995200, 1531785600, 1529884800,
1530662400, 1532995200, 1531785600, 1530662400, 1529884800, 1531785600,
1530662400, 1530662400, 1532995200, 1532995200, 1531785600, 1532995200,
1529884800, 1529884800, 1532995200, 1532995200, 1530662400, 1530662400,
1532995200, 1532995200, 1531785600, 1529884800, 1529884800, 1529884800,
1532995200, 1531785600, 1532995200, 1531785600, 1529884800, 1530662400,
1529884800, 1532995200, 1532995200, 1532995200, 1532995200, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1531785600, 1531785600,
1531785600, 1531785600, 1529884800, 1529884800, 1531785600, 1531785600,
1532995200, 1529884800, 1532995200, 1532995200, 1531785600, 1531785600,
1530662400, 1530662400, 1531785600, 1530662400, 1532995200, 1531785600,
1531785600, 1530662400, 1530662400, 1531785600, 1530662400, 1532995200,
1530662400, 1531785600, 1530662400, 1530662400, 1531785600, 1531785600,
1530662400, 1531785600, 1532995200, 1530662400, 1532995200, 1532995200,
1531785600, 1532995200, 1530662400, 1531785600, 1532995200, 1530662400,
1531785600, 1532995200, 1531785600, 1531785600, 1530662400, 1532995200,
1530662400, 1531785600, 1532995200, 1532995200, 1530662400, 1529884800,
1529884800, 1530662400, 1529884800, 1531785600, 1529884800, 1529884800,
1532995200, 1532995200, 1531785600, 1532995200, 1532995200, 1531785600,
1530662400, 1532995200, 1531785600, 1531785600, 1532995200, 1532995200,
1530662400, 1529884800, 1531785600, 1532995200, 1530662400, 1530662400,
1531785600, 1529884800, 1532995200, 1529884800, 1532995200, 1530662400,
1532995200, 1531785600, 1531785600, 1532995200, 1531785600, 1530662400,
1531785600, 1531785600, 1532995200, 1532995200, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1532995200, 1532995200, 1532995200,
1530662400, 1532995200, 1532995200, 1529884800, 1531785600, 1532995200,
1530662400, 1530662400, 1532995200, 1531785600, 1531785600, 1532995200,
1532995200, 1532995200, 1532995200, 1529884800, 1532995200, 1531785600,
1530662400, 1531785600, 1532995200, 1530662400, 1532995200, 1531785600,
1531785600, 1531785600, 1530662400, 1530662400, 1530662400, 1530662400,
1529884800, 1530662400, 1532995200, 1532995200, 1532995200, 1532995200,
1531785600, 1531785600, 1531785600, 1532995200, 1531785600, 1530662400,
1532995200, 1531785600, 1531785600, 1530662400, 1532995200, 1531785600,
1530662400, 1532995200, 1532995200, 1529884800, 1530662400, 1532995200,
1532995200, 1530662400, 1531785600, 1531785600, 1532995200, 1532995200,
1531785600, 1531785600, 1532995200, 1530662400, 1532995200, 1531785600,
1532995200, 1531785600, 1529884800, 1532995200, 1530662400, 1531785600,
1532995200, 1532995200, 1532995200, 1532995200, 1532995200, 1532995200,
1532995200, 1529884800, 1530662400, 1531785600, 1531785600, 1531785600,
1532995200, 1532995200, 1530662400, 1529884800, 1532995200, 1531785600,
1530662400, 1529884800, 1530662400, 1530662400, 1530662400, 1532995200,
1531785600, 1530662400, 1532995200, 1532995200, 1532995200, 1531785600,
1532995200, 1531785600, 1532995200, 1531785600, 1532995200, 1532995200,
1531785600, 1532995200, 1531785600, 1532995200, 1531785600, 1531785600,
1530662400, 1530662400, 1532995200, 1532995200, 1530662400, 1532995200,
1529884800, 1532995200, 1531785600, 1532995200, 1532995200, 1529884800,
1530662400, 1532995200, 1532995200, 1530662400, 1531785600, 1531785600,
1531785600, 1530662400, 1529884800, 1531785600, 1529884800, 1530662400,
1530662400, 1531785600, 1532995200, 1530662400, 1532995200, 1532995200,
1532995200, 1532995200, 1532995200, 1531785600, 1532995200, 1532995200,
1529884800, 1529884800, 1532995200, 1531785600, 1529884800, 1532995200,
1532995200, 1530662400, 1531785600, 1531785600, 1529884800, 1531785600,
1529884800, 1532995200, 1531785600, 1531785600, 1531785600, 1531785600,
1532995200, 1531785600, 1530662400, 1531785600, 1532995200, 1529884800,
1530662400, 1531785600, 1532995200, 1531785600, 1532995200, 1530662400,
1532995200, 1529884800, 1531785600, 1532995200, 1531785600, 1530662400,
1530662400, 1531785600, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1532995200, 1530662400, 1530662400, 1532995200, 1531785600,
1532995200, 1531785600, 1532995200, 1532995200, 1530662400, 1532995200,
1532995200, 1532995200, 1531785600, 1532995200, 1531785600, 1532995200,
1532995200, 1531785600, 1531785600, 1531785600, 1531785600, 1531785600,
1531785600, 1529884800, 1532995200, 1531785600, 1529884800, 1530662400,
1530662400, 1532995200, 1532995200, 1531785600, 1531785600, 1531785600,
1531785600, 1530662400, 1529884800, 1532995200, 1532995200, 1530662400,
1530662400, 1530662400, 1530662400, 1532995200, 1530662400, 1529884800,
1531785600, 1532995200, 1531785600, 1530662400, 1532995200, 1532995200,
1530662400, 1532995200, 1530662400, 1532995200, 1532995200, 1532995200,
1530662400, 1532995200, 1531785600, 1531785600, 1530662400, 1532995200,
1529884800, 1532995200, 1531785600, 1531785600, 1530662400, 1532995200,
1530662400, 1532995200, 1532995200, 1531785600, 1532995200, 1532995200,
1532995200, 1530662400, 1529884800, 1529884800, 1530662400, 1530662400,
1530662400, 1532995200, 1532995200, 1530662400, 1531785600, 1530662400,
1532995200, 1530662400, 1532995200, 1532995200, 1532995200, 1532995200,
1530662400, 1532995200, 1532995200, 1530662400, 1531785600, 1532995200,
1532995200, 1531785600, 1532995200, 1531785600, 1532995200, 1530662400,
1530662400, 1530662400, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1531785600, 1531785600, 1532995200, 1529884800, 1530662400,
1532995200, 1532995200, 1532995200, 1530662400, 1532995200, 1529884800,
1532995200, 1531785600, 1532995200, 1529884800, 1529884800, 1530662400,
1531785600, 1532995200, 1530662400, 1530662400, 1531785600, 1531785600,
1531785600, 1530662400, 1532995200, 1531785600, 1530662400, 1530662400,
1532995200, 1532995200, 1532995200, 1532995200, 1531785600, 1531785600,
1531785600, 1530662400, 1532995200, 1532995200, 1532995200, 1530662400,
1531785600, 1532995200, 1530662400, 1531785600, 1532995200, 1532995200,
1531785600, 1531785600, 1532995200, 1530662400, 1529884800, 1532995200,
1529884800, 1531785600, 1532995200, 1530662400, 1532995200, 1531785600,
1532995200, 1529884800, 1530662400, 1530662400, 1530662400, 1531785600,
1532995200, 1530662400, 1531785600, 1531785600, 1530662400, 1529884800,
1530662400, 1529884800, 1530662400, 1531785600, 1531785600, 1530662400,
1532995200, 1529884800, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1529884800, 1530662400, 1531785600, 1530662400, 1529884800,
1529884800, 1530662400, 1531785600, 1532995200, 1530662400, 1530662400,
1531785600, 1532995200, 1530662400, 1530662400, 1530662400, 1530662400,
1532995200, 1531785600, 1529884800, 1531785600, 1532995200, 1532995200,
1531785600, 1530662400, 1531785600, 1532995200, 1529884800, 1530662400,
1531785600, 1531785600, 1532995200, 1531785600, 1529884800, 1531785600,
1532995200, 1532995200, 1530662400, 1532995200, 1532995200, 1531785600,
1532995200, 1530662400, 1531785600, 1532995200, 1531785600, 1530662400,
1531785600, 1530662400, 1532995200, 1532995200, 1531785600, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1532995200, 1532995200,
1530662400, 1531785600, 1532995200, 1531785600, 1529884800, 1531785600,
1532995200, 1531785600, 1530662400, 1531785600, 1530662400, 1530662400,
1532995200, 1529884800, 1530662400, 1532995200, 1531785600, 1529884800,
1532995200, 1530662400, 1529884800, 1532995200, 1531785600, 1530662400,
1530662400, 1530662400, 1529884800, 1530662400, 1532995200, 1530662400,
1531785600, 1530662400, 1531785600, 1532995200, 1532995200), class = c("POSIXct",
"POSIXt"), tzone = "UTC"), Plant_ID = c("190", "324", "493",
"111", "511", "299", "309", "539", "431", "121", "182", "587",
"29", "436", "403", "112", "42", "344", "68", "430", "729", "509",
"428", "239", "326", "311", "71", "422", "444", "393", "X404",
"554", "345", "319", "356", "548", "34", "646", "117", "563",
"592", "103", "508", "767", "460", "44", "572", "398", "337",
"554", "239", "580", "377", NA, "448", "X404", "744", "184",
"298", "645", "584", "643", "426", "206", "258", "617", "306",
"703", "12", "643", "726", "380", "126", "426", "374", "156",
"344", "1", "635", "754", "169", "142", "617", "172", "477",
"727", "25", "342", "502", "286", "530", "249", "512", "546",
"35", "370", "653", "116", "621", "X404", "239", "751", "169",
"281", "346", "156", "463", "537", "622", "376", "775", "575",
"382", "532", "208", "90", "475", "311", "582", "534", "644",
"79", "404", "460", "470", "299", "94", "608", "214", "83", "623",
"315", "582", "619", "283", "29", "73", "19", "757", "589", "85",
"526", "155", "535", "618", "335", "568", "330", "262", "354",
"234", "597", "296", "444", "411", "232", "775", "591", "284",
"373", "639", "377", "603", "41", "511", "146", "525", "508",
"233", "335", "235", "593", "25", "564", "603", "334", "173",
"44", "232", "716", "57", "3", "593", "589", "40 NL G9", "32",
"411", "545", "77", "285", "435", "247", "630", "481", "409",
"325", "516", "231", "776", "225", "299", "448", "282", "483",
"690", "251", "480", "574", "156", "557", "20", "368", "76",
"253", "380", "139", "610", "509", "117", "35", "340", "643",
"7", "736", "320", "311", "59", "430", "721", "81", "74", "335",
"765", "639", "326", "60", "477", "296", "200", "630", "602",
"531", "70", "535", "530", "104", "233", "95", "572", "227",
"617", "557", "346", "214", "574", "114", "707", "72", "622",
"177", "330", "97", "33", "127", "779", "308", "256", "363",
"436", "333", "287", "529", "516", "765", "644", "128", "61",
"3", "436", "303", "310", "136", "324", "731", "572", "769",
"591", "283", "762", "441", "101", "640", "5NL29", "155", "639",
"336", "719", "647", "30", "539", "26", "601", "416", "70", "166",
"224", "284", "358", "317", "236", "70", "71", "120", "147",
"584", "240", "421", "16", "460", "209", "424", "510", "632",
"412", "603", "346", "563", "628", "423", "572", "85", "138",
"299", "118", "172", "586", "3", "643", "77", "308", "410", "623",
"190", "222", "175", "283", "651", "378", "396", "298", "730",
"546", "454", "271", "533", "356", "331", "702", "303", "572",
"290", "580", "179", "304", "214", "226", "255", "737", "324",
"651", "43", "300", "483", "623", "291", "335", "574", "475",
"283", "271", "74", "282", "30", "300", "767", "113", "73", "591",
"170", "276", "557", "532", "22", "365", "505", "640", "471",
"310", "346", "330", "551", "686", "667", "543", "398", "114",
"338", "19", "75", "29", "562", "31", "307", "183", "352", "18",
"86", "564", "155", "311", "767", "460", "590", "4", "260", "631",
"391", "180", "21", "645", "179", "86", "646", "358", "564",
"531", "290", "250", "195", "368", "356", "155", "169", "340",
"666", "721", "333", "585", "77", "586", "533", "641", "83",
"244", "258", "586", "272", "17", "256", "268", "196", "166",
"594", "59", "174", "299", "366", "14", "642", "306", "251",
"665", "229", "729", "517", "413", "563", "372", "610", "460",
"344", "276", "411", "675", "777", "617", "733", "201", "296",
"467", "375", "623", "459", "572", "433", "764", "643", "770",
"580", "517", "225", "335", "319", "541", "178", "529", "361",
"520", "403", "407", "492", "116", "194", "226", "535", "57",
"497", "74", "441", "586", "60", "9", "762", "347", "403", "186",
"444", "728", "590", "172", "415", "551", "387", "59", "454",
"120", "603", "169", "377", "317", "281", "31", "276", "423",
"297", "249", "237", "405", "578", "262", "399", "744", "387",
"299", "640", "296", "86", "153", "362", "412", "623", "317",
"246", "625", "780", "188", "522", "258", "307", "599", "317",
"564", "39", "3", "308", "367", "86", "499", "372", "25", "508",
"100", "70", "126", "215", "88", "175", "629", "70", "597", "183",
"528", "180", "592", "349", "232", "32", "644", "588", "67",
"308", "520", "290", "307", "425", "428", "184", "13", "299",
"646", "22", "95", "533", "118", "291", "643", "574", "168",
"321", "741", "356", "87", "494", "203", "439", "357", "58",
"372", "767", "411", "232", "282", "392", "530", "756", "240",
"619", "537", "448", "31", "178", "487", "20", "2", "373", "591",
"136", "503", "222", "581", "103", "503", "338", "312", "56",
"128", "329", "303", "312", "157", "393", "360", "332", "11",
"644", "531", "416", "324", "14", "391", "365", "280", "367",
"352", "248", "78", "316", "153", "102", "442", "108", "582",
"280", "108", "242", "91", "253", "113", "728", "180", "680",
"294", "G10", "115", "237", "30", "71", "143", "9", "1", "558",
"26", "174", "86", "690", "475", "316", "X102", "756", "29",
"350", "533", "169", "83", "508", "607", "47", "176", "313",
"779", "166", "29", "642", "716", "594", "88", "413", "503",
"689", "169", "671", "561", "273", "116", "460", "71", "326",
"408", "631", "236", "32", "744", "2", "322", "81", "283", "14",
"628", "339", "346", "344", "241", "233", "626", "228", "334",
"525", "564", "243", "388", "358", "548", "316", "174", "635",
"57", "31", "42", "6", "438", "116", "509", "535", "762", "562",
"241", "83", "239", "426", "308", "38", "579", "448", "300",
"135", "588", "501", "68", "570", "481", "313", "335", "509",
"424", "602", "768", "639", "654", "729", "378"), Leaf = c(2,
10, 4, 4, 7, 10, 5, 5, 5, 2, 3, 6, 4, 1, 5, 10, 2, 2, 11, 11,
10, 10, 7, 45, 2, 1, 23, 3, 2, 1, 6, 5, 2, 4, 6, 2, 5, 7, 3,
3, 1, 10, 14, 9, 7, 2, 3, 12, 8, 6, 30, 2, 4, NA, 5, 4, 6, 3,
2, 13, 5, 12, 12, 5, 3, 3, 1, 1, 4, 20, 3, 8, 7, 16, 5, 5, 2,
4, 9, 2, 4, 8, 16, 4, 2, 2, 8, 13, 5, 15, 3, 7, 3, 3, 4, 6, 4,
8, 2, 1, 35, 4, 18, 2, 12, 5, 2, 13, 3, 2, 2, 3, 2, 2, 1, 1,
16, 4, 1, 1, 7, 4, 5, 2, 1, 6, 1, 1, 3, 4, 1, 3, 11, 9, 7, 1,
9, 6, 2, 17, 1, 2, 4, 15, 5, 11, 7, 4, 11, 2, 8, 8, 21, 2, 5,
5, 4, 10, 18, 7, 15, 1, 4, 5, 1, 9, 13, 19, 16, 13, 2, 4, 12,
8, 1, 1, 11, 2, 6, 5, 14, 10, 3, 5, 1, 5, 1, 2, 2, 1, 6, 6, 3,
1, 5, 14, 34, 2, 4, 1, 2, 11, 7, 4, 5, 3, 10, 4, 2, 5, 15, 3,
2, 2, 8, 2, 6, 34, 9, 1, 6, 18, 4, 8, 2, 9, 9, 1, 5, 1, 23, 15,
5, 2, 6, 14, 5, 2, 2, 3, 4, 6, 13, 7, 6, 8, 1, 22, 2, 7, 11,
4, 4, 2, 11, 1, 1, 20, 1, 4, 5, 3, 5, 20, 5, 10, 1, 4, 4, 7,
6, 1, 2, 3, 12, 13, 3, 13, 3, 3, 8, 17, 2, 2, 3, 2, 3, 8, 13,
1, 6, 11, 2, 4, 1, 6, 3, 5, 9, 2, 4, 1, 8, 5, 1, 13, 8, 3, 7,
9, 3, 28, 2, 6, 2, 14, 1, 3, 5, 4, 4, 1, 1, 1, 3, 17, 12, 16,
6, 11, 3, 6, 9, 3, 11, 2, 11, 10, 6, 7, 4, 10, 3, 2, 3, 7, 2,
6, 4, 6, 7, 4, 6, 2, 4, 7, 3, 3, 6, 8, 4, 1, 3, 1, 3, 6, 1, 1,
7, 3, 3, 6, 6, 25, 14, 10, 1, 19, 1, 2, 21, 27, 6, 4, 8, 5, 10,
16, 8, 9, 1, 5, 5, 4, 3, 8, 1, 8, 8, 6, 2, 5, 1, 7, 4, 3, 1,
1, 5, 3, 18, 12, 15, 2, 6, 5, 8, 6, 5, 9, 6, 12, 3, 6, 13, 4,
5, 1, 6, 2, 4, 14, 1, 10, 9, 5, 12, 7, 2, 4, 1, 3, 6, 12, 4,
4, 6, 2, 5, 7, 6, 2, 8, 10, 2, 9, 1, 7, 8, 5, 21, 6, 3, 11, 16,
14, 3, 8, 11, 1, 2, 1, 5, 5, 8, 5, 6, 1, 15, 9, 4, 14, 10, 2,
5, 6, 4, 4, 2, 5, 1, 22, 8, 20, 1, 4, 6, 4, 13, 9, 2, 10, 3,
4, 21, 2, 7, 9, 1, 1, 3, 6, 6, 7, 3, 16, 4, 23, 11, 11, 1, 6,
2, 4, 7, 19, 4, 9, 4, 9, 7, 5, 3, 18, 5, 5, 3, 13, 15, 3, 10,
10, 7, 2, 5, 6, 16, 18, 5, 4, 5, 1, 5, 8, 1, 24, 11, 4, 1, 6,
14, 5, 10, 6, 15, 6, 5, 9, 8, 2, 8, 7, 10, 1, 11, 5, 9, 2, 12,
8, 11, 18, 7, 3, 14, 19, 2, 2, 2, 1, 5, 7, 13, 8, 9, 12, 13,
2, 9, 3, 5, 2, 13, 4, 4, 10, 3, 6, 9, 10, 7, 1, 8, 28, 14, 5,
13, 4, 11, 2, 1, 4, 4, 5, 2, 3, 5, 1, 6, 4, 3, 10, 6, 5, 6, 24,
5, 4, 8, 14, 2, 2, 11, 20, 3, 23, 18, 8, 5, 4, 10, 3, 4, 2, 11,
15, 4, 4, 13, 7, 4, 9, 8, 3, 15, 1, 8, 3, 16, 5, 1, 11, 2, 6,
2, 5, 4, 5, 4, 16, 3, 12, 5, 2, 4, 1, 5, 6, 3, 11, 4, 2, 3, 3,
7, 1, 1, 18, 2, 21, 1, 3, 1, 2, 6, 3, 2, 2, 4, 13, 1, 2, 11,
1, 15, 7, 5, 5, 2, 3, 4, 10, 6, 3, 5, 1, 6, 4, 6, 18, 4, 3, 5,
4, 12, 3, 4, 19, 13, 11, 2, 6, 10, 7, 18, 1, 8, 28, 1, 22, 4,
9, 8, 1, 6, 5, 14, 9, 1, 1, 10, 4, 16, 18, 1, 1, 6, 9, 7, 3,
5, 18, 1, 5, 6, 8, 5, 39, 4, 6, 17, 11, 4, 2, 6, 1, 1, 9, 7,
2, 7, 1, 7, 9, 2, 3, 5, 2, 3, 7), P.A = c(1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1), L.PA = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1)), .Names = c("Date", "Plant_ID", "Leaf", "P.A", "L.PA"), row.names = c(NA,
-800L), class = c("tbl_df", "tbl", "data.frame"))
感谢大家的帮助,我最终解决了这个问题,这个问题可能只适用于我自己,但如果其他人有同样的问题,我是如何解决的:
需要重新组织数据框以便于绘图
DFP.A <- table(DF3$Date,DF3$P.A)
DFLP.A <- table(DF3$Date,DF3$L.PA)
dfa<-as.data.frame(DFP.A)
dfb<-as.data.frame(DFLP.A)
#This gives the frequencies of upper and lower infected leaves on each date in two different data frames
# i then rename the columns mostly to make it easier for myself
DFP.A
DFLP.A
colnames(dfa)[which(names(dfa) == "Var1")] <- "Date"
colnames(dfa)[which(names(dfa) == "Var2")] <- "infected"
colnames(dfa)[which(names(dfa) == "Freq")] <- "Upper_infected"
# i remove the Unifected ones from the data frames (those that have a 0)
dfa<-dfa[dfa$infected!="0",]
dfa <- subset(dfa, select = - infected)
colnames(dfb)[which(names(dfb) == "Var1")] <- "Date"
colnames(dfb)[which(names(dfb) == "Var2")] <- "infected"
colnames(dfb)[which(names(dfb) == "Freq")] <- "Lower_infected"
dfb<-dfb[dfb$infected!="0",]
dfb <- subset(dfb, select = - infected)
dfc<- merge(dfa,dfb, by = "Date")
# melt the dataframe to make it more easily graphed
library(reshape)
dfd <- melt(dfc, id=c("Date"))
# now attempt the graphs finally
ggplot(dfd, aes(factor(Date), value, fill = variable )) +
geom_bar(stat="identity", position = "dodge") +
scale_fill_brewer(palette = "Set1")
The final grouped bar chart
我想制作一个包含两个二项式变量的分组条形图。
我记录了橡树叶子顶部 (P.A) 和底部 (U.PA) 被白粉病感染的情况。它们被组织为存在(用“1”表示)或不存在(用“0”表示)。
This is an image showing the top of my dataframe. 它由日期、叶数、植物 ID 和两个二项式变量 P.A 和 U.PA 组织。
我可以将它们分别绘制在两个条形图中。
Percentage of leaves with Powdery mildew infection upon the upper surface of the leafs
Percentage of leaves with powdery mildew upon the under surface of the leafs
使用此代码:
plot(DFP$P.A ~ DFP$Date, ylim=c(0,0.2), main= "Leaves infected with powdery mildew on the upper surface", ylab = "Percentage of leaves infected", xlab= "Date")
plot(DFP$L.PA ~ DFP$Date, ylim=c(0,0.2), main= "Leaves infected with powdery mildew on the lower surface", ylab = "Percentage of leaves infected", xlab= "Date")
我基本上想将以上两张图片重新合二为一。因此按日期分组 U.PA 和 P.A 的叶子总数中被感染的叶子百分比,但在同一张图表上。
我看到网站上有一些关于分组条形图的主题,但我无法将其应用于我的数据集,可能是因为它是二项式数据?我为自己对 r 的无知表示歉意,但我正在慢慢学习。
如有任何帮助,我们将不胜感激!
我使用 dput(DFY) 作为完整数据的数据子集不适合:
structure(list(Date = structure(c(1532995200, 1532995200, 1530662400,
1530662400, 1532995200, 1531785600, 1530662400, 1532995200, 1531785600,
1531785600, 1531785600, 1529884800, 1531785600, 1531785600, 1529884800,
1532995200, 1532995200, 1529884800, 1530662400, 1531785600, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1531785600, 1532995200,
1531785600, 1531785600, 1532995200, 1532995200, 1530662400, 1532995200,
1530662400, 1530662400, 1532995200, 1531785600, 1529884800, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1532995200, 1529884800,
1531785600, 1530662400, 1530662400, 1532995200, 1529884800, 1530662400,
1530662400, 1531785600, NA, 1531785600, 1530662400, 1531785600,
1529884800, 1532995200, 1531785600, 1532995200, 1532995200, 1532995200,
1532995200, 1531785600, 1531785600, 1530662400, 1532995200, 1530662400,
1532995200, 1531785600, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1532995200, 1531785600, 1532995200, 1532995200, 1532995200,
1531785600, 1532995200, 1532995200, 1532995200, 1531785600, 1531785600,
1532995200, 1532995200, 1531785600, 1529884800, 1531785600, 1531785600,
1531785600, 1530662400, 1532995200, 1530662400, 1532995200, 1531785600,
1531785600, 1530662400, 1531785600, 1530662400, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1529884800, 1530662400, 1531785600,
1531785600, 1532995200, 1530662400, 1531785600, 1531785600, 1532995200,
1531785600, 1529884800, 1529884800, 1532995200, 1531785600, 1532995200,
1532995200, 1532995200, 1530662400, 1530662400, 1532995200, 1530662400,
1531785600, 1530662400, 1532995200, 1529884800, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1531785600, 1532995200, 1530662400,
1531785600, 1530662400, 1532995200, 1530662400, 1530662400, 1531785600,
1532995200, 1532995200, 1530662400, 1532995200, 1530662400, 1532995200,
1532995200, 1530662400, 1531785600, 1532995200, 1532995200, 1530662400,
1532995200, 1532995200, 1531785600, 1530662400, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1532995200, 1531785600, 1529884800,
1530662400, 1532995200, 1531785600, 1530662400, 1529884800, 1531785600,
1530662400, 1530662400, 1532995200, 1532995200, 1531785600, 1532995200,
1529884800, 1529884800, 1532995200, 1532995200, 1530662400, 1530662400,
1532995200, 1532995200, 1531785600, 1529884800, 1529884800, 1529884800,
1532995200, 1531785600, 1532995200, 1531785600, 1529884800, 1530662400,
1529884800, 1532995200, 1532995200, 1532995200, 1532995200, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1531785600, 1531785600,
1531785600, 1531785600, 1529884800, 1529884800, 1531785600, 1531785600,
1532995200, 1529884800, 1532995200, 1532995200, 1531785600, 1531785600,
1530662400, 1530662400, 1531785600, 1530662400, 1532995200, 1531785600,
1531785600, 1530662400, 1530662400, 1531785600, 1530662400, 1532995200,
1530662400, 1531785600, 1530662400, 1530662400, 1531785600, 1531785600,
1530662400, 1531785600, 1532995200, 1530662400, 1532995200, 1532995200,
1531785600, 1532995200, 1530662400, 1531785600, 1532995200, 1530662400,
1531785600, 1532995200, 1531785600, 1531785600, 1530662400, 1532995200,
1530662400, 1531785600, 1532995200, 1532995200, 1530662400, 1529884800,
1529884800, 1530662400, 1529884800, 1531785600, 1529884800, 1529884800,
1532995200, 1532995200, 1531785600, 1532995200, 1532995200, 1531785600,
1530662400, 1532995200, 1531785600, 1531785600, 1532995200, 1532995200,
1530662400, 1529884800, 1531785600, 1532995200, 1530662400, 1530662400,
1531785600, 1529884800, 1532995200, 1529884800, 1532995200, 1530662400,
1532995200, 1531785600, 1531785600, 1532995200, 1531785600, 1530662400,
1531785600, 1531785600, 1532995200, 1532995200, 1531785600, 1531785600,
1531785600, 1532995200, 1532995200, 1532995200, 1532995200, 1532995200,
1530662400, 1532995200, 1532995200, 1529884800, 1531785600, 1532995200,
1530662400, 1530662400, 1532995200, 1531785600, 1531785600, 1532995200,
1532995200, 1532995200, 1532995200, 1529884800, 1532995200, 1531785600,
1530662400, 1531785600, 1532995200, 1530662400, 1532995200, 1531785600,
1531785600, 1531785600, 1530662400, 1530662400, 1530662400, 1530662400,
1529884800, 1530662400, 1532995200, 1532995200, 1532995200, 1532995200,
1531785600, 1531785600, 1531785600, 1532995200, 1531785600, 1530662400,
1532995200, 1531785600, 1531785600, 1530662400, 1532995200, 1531785600,
1530662400, 1532995200, 1532995200, 1529884800, 1530662400, 1532995200,
1532995200, 1530662400, 1531785600, 1531785600, 1532995200, 1532995200,
1531785600, 1531785600, 1532995200, 1530662400, 1532995200, 1531785600,
1532995200, 1531785600, 1529884800, 1532995200, 1530662400, 1531785600,
1532995200, 1532995200, 1532995200, 1532995200, 1532995200, 1532995200,
1532995200, 1529884800, 1530662400, 1531785600, 1531785600, 1531785600,
1532995200, 1532995200, 1530662400, 1529884800, 1532995200, 1531785600,
1530662400, 1529884800, 1530662400, 1530662400, 1530662400, 1532995200,
1531785600, 1530662400, 1532995200, 1532995200, 1532995200, 1531785600,
1532995200, 1531785600, 1532995200, 1531785600, 1532995200, 1532995200,
1531785600, 1532995200, 1531785600, 1532995200, 1531785600, 1531785600,
1530662400, 1530662400, 1532995200, 1532995200, 1530662400, 1532995200,
1529884800, 1532995200, 1531785600, 1532995200, 1532995200, 1529884800,
1530662400, 1532995200, 1532995200, 1530662400, 1531785600, 1531785600,
1531785600, 1530662400, 1529884800, 1531785600, 1529884800, 1530662400,
1530662400, 1531785600, 1532995200, 1530662400, 1532995200, 1532995200,
1532995200, 1532995200, 1532995200, 1531785600, 1532995200, 1532995200,
1529884800, 1529884800, 1532995200, 1531785600, 1529884800, 1532995200,
1532995200, 1530662400, 1531785600, 1531785600, 1529884800, 1531785600,
1529884800, 1532995200, 1531785600, 1531785600, 1531785600, 1531785600,
1532995200, 1531785600, 1530662400, 1531785600, 1532995200, 1529884800,
1530662400, 1531785600, 1532995200, 1531785600, 1532995200, 1530662400,
1532995200, 1529884800, 1531785600, 1532995200, 1531785600, 1530662400,
1530662400, 1531785600, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1532995200, 1530662400, 1530662400, 1532995200, 1531785600,
1532995200, 1531785600, 1532995200, 1532995200, 1530662400, 1532995200,
1532995200, 1532995200, 1531785600, 1532995200, 1531785600, 1532995200,
1532995200, 1531785600, 1531785600, 1531785600, 1531785600, 1531785600,
1531785600, 1529884800, 1532995200, 1531785600, 1529884800, 1530662400,
1530662400, 1532995200, 1532995200, 1531785600, 1531785600, 1531785600,
1531785600, 1530662400, 1529884800, 1532995200, 1532995200, 1530662400,
1530662400, 1530662400, 1530662400, 1532995200, 1530662400, 1529884800,
1531785600, 1532995200, 1531785600, 1530662400, 1532995200, 1532995200,
1530662400, 1532995200, 1530662400, 1532995200, 1532995200, 1532995200,
1530662400, 1532995200, 1531785600, 1531785600, 1530662400, 1532995200,
1529884800, 1532995200, 1531785600, 1531785600, 1530662400, 1532995200,
1530662400, 1532995200, 1532995200, 1531785600, 1532995200, 1532995200,
1532995200, 1530662400, 1529884800, 1529884800, 1530662400, 1530662400,
1530662400, 1532995200, 1532995200, 1530662400, 1531785600, 1530662400,
1532995200, 1530662400, 1532995200, 1532995200, 1532995200, 1532995200,
1530662400, 1532995200, 1532995200, 1530662400, 1531785600, 1532995200,
1532995200, 1531785600, 1532995200, 1531785600, 1532995200, 1530662400,
1530662400, 1530662400, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1531785600, 1531785600, 1532995200, 1529884800, 1530662400,
1532995200, 1532995200, 1532995200, 1530662400, 1532995200, 1529884800,
1532995200, 1531785600, 1532995200, 1529884800, 1529884800, 1530662400,
1531785600, 1532995200, 1530662400, 1530662400, 1531785600, 1531785600,
1531785600, 1530662400, 1532995200, 1531785600, 1530662400, 1530662400,
1532995200, 1532995200, 1532995200, 1532995200, 1531785600, 1531785600,
1531785600, 1530662400, 1532995200, 1532995200, 1532995200, 1530662400,
1531785600, 1532995200, 1530662400, 1531785600, 1532995200, 1532995200,
1531785600, 1531785600, 1532995200, 1530662400, 1529884800, 1532995200,
1529884800, 1531785600, 1532995200, 1530662400, 1532995200, 1531785600,
1532995200, 1529884800, 1530662400, 1530662400, 1530662400, 1531785600,
1532995200, 1530662400, 1531785600, 1531785600, 1530662400, 1529884800,
1530662400, 1529884800, 1530662400, 1531785600, 1531785600, 1530662400,
1532995200, 1529884800, 1532995200, 1532995200, 1531785600, 1532995200,
1532995200, 1529884800, 1530662400, 1531785600, 1530662400, 1529884800,
1529884800, 1530662400, 1531785600, 1532995200, 1530662400, 1530662400,
1531785600, 1532995200, 1530662400, 1530662400, 1530662400, 1530662400,
1532995200, 1531785600, 1529884800, 1531785600, 1532995200, 1532995200,
1531785600, 1530662400, 1531785600, 1532995200, 1529884800, 1530662400,
1531785600, 1531785600, 1532995200, 1531785600, 1529884800, 1531785600,
1532995200, 1532995200, 1530662400, 1532995200, 1532995200, 1531785600,
1532995200, 1530662400, 1531785600, 1532995200, 1531785600, 1530662400,
1531785600, 1530662400, 1532995200, 1532995200, 1531785600, 1532995200,
1531785600, 1532995200, 1532995200, 1531785600, 1532995200, 1532995200,
1530662400, 1531785600, 1532995200, 1531785600, 1529884800, 1531785600,
1532995200, 1531785600, 1530662400, 1531785600, 1530662400, 1530662400,
1532995200, 1529884800, 1530662400, 1532995200, 1531785600, 1529884800,
1532995200, 1530662400, 1529884800, 1532995200, 1531785600, 1530662400,
1530662400, 1530662400, 1529884800, 1530662400, 1532995200, 1530662400,
1531785600, 1530662400, 1531785600, 1532995200, 1532995200), class = c("POSIXct",
"POSIXt"), tzone = "UTC"), Plant_ID = c("190", "324", "493",
"111", "511", "299", "309", "539", "431", "121", "182", "587",
"29", "436", "403", "112", "42", "344", "68", "430", "729", "509",
"428", "239", "326", "311", "71", "422", "444", "393", "X404",
"554", "345", "319", "356", "548", "34", "646", "117", "563",
"592", "103", "508", "767", "460", "44", "572", "398", "337",
"554", "239", "580", "377", NA, "448", "X404", "744", "184",
"298", "645", "584", "643", "426", "206", "258", "617", "306",
"703", "12", "643", "726", "380", "126", "426", "374", "156",
"344", "1", "635", "754", "169", "142", "617", "172", "477",
"727", "25", "342", "502", "286", "530", "249", "512", "546",
"35", "370", "653", "116", "621", "X404", "239", "751", "169",
"281", "346", "156", "463", "537", "622", "376", "775", "575",
"382", "532", "208", "90", "475", "311", "582", "534", "644",
"79", "404", "460", "470", "299", "94", "608", "214", "83", "623",
"315", "582", "619", "283", "29", "73", "19", "757", "589", "85",
"526", "155", "535", "618", "335", "568", "330", "262", "354",
"234", "597", "296", "444", "411", "232", "775", "591", "284",
"373", "639", "377", "603", "41", "511", "146", "525", "508",
"233", "335", "235", "593", "25", "564", "603", "334", "173",
"44", "232", "716", "57", "3", "593", "589", "40 NL G9", "32",
"411", "545", "77", "285", "435", "247", "630", "481", "409",
"325", "516", "231", "776", "225", "299", "448", "282", "483",
"690", "251", "480", "574", "156", "557", "20", "368", "76",
"253", "380", "139", "610", "509", "117", "35", "340", "643",
"7", "736", "320", "311", "59", "430", "721", "81", "74", "335",
"765", "639", "326", "60", "477", "296", "200", "630", "602",
"531", "70", "535", "530", "104", "233", "95", "572", "227",
"617", "557", "346", "214", "574", "114", "707", "72", "622",
"177", "330", "97", "33", "127", "779", "308", "256", "363",
"436", "333", "287", "529", "516", "765", "644", "128", "61",
"3", "436", "303", "310", "136", "324", "731", "572", "769",
"591", "283", "762", "441", "101", "640", "5NL29", "155", "639",
"336", "719", "647", "30", "539", "26", "601", "416", "70", "166",
"224", "284", "358", "317", "236", "70", "71", "120", "147",
"584", "240", "421", "16", "460", "209", "424", "510", "632",
"412", "603", "346", "563", "628", "423", "572", "85", "138",
"299", "118", "172", "586", "3", "643", "77", "308", "410", "623",
"190", "222", "175", "283", "651", "378", "396", "298", "730",
"546", "454", "271", "533", "356", "331", "702", "303", "572",
"290", "580", "179", "304", "214", "226", "255", "737", "324",
"651", "43", "300", "483", "623", "291", "335", "574", "475",
"283", "271", "74", "282", "30", "300", "767", "113", "73", "591",
"170", "276", "557", "532", "22", "365", "505", "640", "471",
"310", "346", "330", "551", "686", "667", "543", "398", "114",
"338", "19", "75", "29", "562", "31", "307", "183", "352", "18",
"86", "564", "155", "311", "767", "460", "590", "4", "260", "631",
"391", "180", "21", "645", "179", "86", "646", "358", "564",
"531", "290", "250", "195", "368", "356", "155", "169", "340",
"666", "721", "333", "585", "77", "586", "533", "641", "83",
"244", "258", "586", "272", "17", "256", "268", "196", "166",
"594", "59", "174", "299", "366", "14", "642", "306", "251",
"665", "229", "729", "517", "413", "563", "372", "610", "460",
"344", "276", "411", "675", "777", "617", "733", "201", "296",
"467", "375", "623", "459", "572", "433", "764", "643", "770",
"580", "517", "225", "335", "319", "541", "178", "529", "361",
"520", "403", "407", "492", "116", "194", "226", "535", "57",
"497", "74", "441", "586", "60", "9", "762", "347", "403", "186",
"444", "728", "590", "172", "415", "551", "387", "59", "454",
"120", "603", "169", "377", "317", "281", "31", "276", "423",
"297", "249", "237", "405", "578", "262", "399", "744", "387",
"299", "640", "296", "86", "153", "362", "412", "623", "317",
"246", "625", "780", "188", "522", "258", "307", "599", "317",
"564", "39", "3", "308", "367", "86", "499", "372", "25", "508",
"100", "70", "126", "215", "88", "175", "629", "70", "597", "183",
"528", "180", "592", "349", "232", "32", "644", "588", "67",
"308", "520", "290", "307", "425", "428", "184", "13", "299",
"646", "22", "95", "533", "118", "291", "643", "574", "168",
"321", "741", "356", "87", "494", "203", "439", "357", "58",
"372", "767", "411", "232", "282", "392", "530", "756", "240",
"619", "537", "448", "31", "178", "487", "20", "2", "373", "591",
"136", "503", "222", "581", "103", "503", "338", "312", "56",
"128", "329", "303", "312", "157", "393", "360", "332", "11",
"644", "531", "416", "324", "14", "391", "365", "280", "367",
"352", "248", "78", "316", "153", "102", "442", "108", "582",
"280", "108", "242", "91", "253", "113", "728", "180", "680",
"294", "G10", "115", "237", "30", "71", "143", "9", "1", "558",
"26", "174", "86", "690", "475", "316", "X102", "756", "29",
"350", "533", "169", "83", "508", "607", "47", "176", "313",
"779", "166", "29", "642", "716", "594", "88", "413", "503",
"689", "169", "671", "561", "273", "116", "460", "71", "326",
"408", "631", "236", "32", "744", "2", "322", "81", "283", "14",
"628", "339", "346", "344", "241", "233", "626", "228", "334",
"525", "564", "243", "388", "358", "548", "316", "174", "635",
"57", "31", "42", "6", "438", "116", "509", "535", "762", "562",
"241", "83", "239", "426", "308", "38", "579", "448", "300",
"135", "588", "501", "68", "570", "481", "313", "335", "509",
"424", "602", "768", "639", "654", "729", "378"), Leaf = c(2,
10, 4, 4, 7, 10, 5, 5, 5, 2, 3, 6, 4, 1, 5, 10, 2, 2, 11, 11,
10, 10, 7, 45, 2, 1, 23, 3, 2, 1, 6, 5, 2, 4, 6, 2, 5, 7, 3,
3, 1, 10, 14, 9, 7, 2, 3, 12, 8, 6, 30, 2, 4, NA, 5, 4, 6, 3,
2, 13, 5, 12, 12, 5, 3, 3, 1, 1, 4, 20, 3, 8, 7, 16, 5, 5, 2,
4, 9, 2, 4, 8, 16, 4, 2, 2, 8, 13, 5, 15, 3, 7, 3, 3, 4, 6, 4,
8, 2, 1, 35, 4, 18, 2, 12, 5, 2, 13, 3, 2, 2, 3, 2, 2, 1, 1,
16, 4, 1, 1, 7, 4, 5, 2, 1, 6, 1, 1, 3, 4, 1, 3, 11, 9, 7, 1,
9, 6, 2, 17, 1, 2, 4, 15, 5, 11, 7, 4, 11, 2, 8, 8, 21, 2, 5,
5, 4, 10, 18, 7, 15, 1, 4, 5, 1, 9, 13, 19, 16, 13, 2, 4, 12,
8, 1, 1, 11, 2, 6, 5, 14, 10, 3, 5, 1, 5, 1, 2, 2, 1, 6, 6, 3,
1, 5, 14, 34, 2, 4, 1, 2, 11, 7, 4, 5, 3, 10, 4, 2, 5, 15, 3,
2, 2, 8, 2, 6, 34, 9, 1, 6, 18, 4, 8, 2, 9, 9, 1, 5, 1, 23, 15,
5, 2, 6, 14, 5, 2, 2, 3, 4, 6, 13, 7, 6, 8, 1, 22, 2, 7, 11,
4, 4, 2, 11, 1, 1, 20, 1, 4, 5, 3, 5, 20, 5, 10, 1, 4, 4, 7,
6, 1, 2, 3, 12, 13, 3, 13, 3, 3, 8, 17, 2, 2, 3, 2, 3, 8, 13,
1, 6, 11, 2, 4, 1, 6, 3, 5, 9, 2, 4, 1, 8, 5, 1, 13, 8, 3, 7,
9, 3, 28, 2, 6, 2, 14, 1, 3, 5, 4, 4, 1, 1, 1, 3, 17, 12, 16,
6, 11, 3, 6, 9, 3, 11, 2, 11, 10, 6, 7, 4, 10, 3, 2, 3, 7, 2,
6, 4, 6, 7, 4, 6, 2, 4, 7, 3, 3, 6, 8, 4, 1, 3, 1, 3, 6, 1, 1,
7, 3, 3, 6, 6, 25, 14, 10, 1, 19, 1, 2, 21, 27, 6, 4, 8, 5, 10,
16, 8, 9, 1, 5, 5, 4, 3, 8, 1, 8, 8, 6, 2, 5, 1, 7, 4, 3, 1,
1, 5, 3, 18, 12, 15, 2, 6, 5, 8, 6, 5, 9, 6, 12, 3, 6, 13, 4,
5, 1, 6, 2, 4, 14, 1, 10, 9, 5, 12, 7, 2, 4, 1, 3, 6, 12, 4,
4, 6, 2, 5, 7, 6, 2, 8, 10, 2, 9, 1, 7, 8, 5, 21, 6, 3, 11, 16,
14, 3, 8, 11, 1, 2, 1, 5, 5, 8, 5, 6, 1, 15, 9, 4, 14, 10, 2,
5, 6, 4, 4, 2, 5, 1, 22, 8, 20, 1, 4, 6, 4, 13, 9, 2, 10, 3,
4, 21, 2, 7, 9, 1, 1, 3, 6, 6, 7, 3, 16, 4, 23, 11, 11, 1, 6,
2, 4, 7, 19, 4, 9, 4, 9, 7, 5, 3, 18, 5, 5, 3, 13, 15, 3, 10,
10, 7, 2, 5, 6, 16, 18, 5, 4, 5, 1, 5, 8, 1, 24, 11, 4, 1, 6,
14, 5, 10, 6, 15, 6, 5, 9, 8, 2, 8, 7, 10, 1, 11, 5, 9, 2, 12,
8, 11, 18, 7, 3, 14, 19, 2, 2, 2, 1, 5, 7, 13, 8, 9, 12, 13,
2, 9, 3, 5, 2, 13, 4, 4, 10, 3, 6, 9, 10, 7, 1, 8, 28, 14, 5,
13, 4, 11, 2, 1, 4, 4, 5, 2, 3, 5, 1, 6, 4, 3, 10, 6, 5, 6, 24,
5, 4, 8, 14, 2, 2, 11, 20, 3, 23, 18, 8, 5, 4, 10, 3, 4, 2, 11,
15, 4, 4, 13, 7, 4, 9, 8, 3, 15, 1, 8, 3, 16, 5, 1, 11, 2, 6,
2, 5, 4, 5, 4, 16, 3, 12, 5, 2, 4, 1, 5, 6, 3, 11, 4, 2, 3, 3,
7, 1, 1, 18, 2, 21, 1, 3, 1, 2, 6, 3, 2, 2, 4, 13, 1, 2, 11,
1, 15, 7, 5, 5, 2, 3, 4, 10, 6, 3, 5, 1, 6, 4, 6, 18, 4, 3, 5,
4, 12, 3, 4, 19, 13, 11, 2, 6, 10, 7, 18, 1, 8, 28, 1, 22, 4,
9, 8, 1, 6, 5, 14, 9, 1, 1, 10, 4, 16, 18, 1, 1, 6, 9, 7, 3,
5, 18, 1, 5, 6, 8, 5, 39, 4, 6, 17, 11, 4, 2, 6, 1, 1, 9, 7,
2, 7, 1, 7, 9, 2, 3, 5, 2, 3, 7), P.A = c(1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1), L.PA = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1)), .Names = c("Date", "Plant_ID", "Leaf", "P.A", "L.PA"), row.names = c(NA,
-800L), class = c("tbl_df", "tbl", "data.frame"))
感谢大家的帮助,我最终解决了这个问题,这个问题可能只适用于我自己,但如果其他人有同样的问题,我是如何解决的:
需要重新组织数据框以便于绘图
DFP.A <- table(DF3$Date,DF3$P.A)
DFLP.A <- table(DF3$Date,DF3$L.PA)
dfa<-as.data.frame(DFP.A)
dfb<-as.data.frame(DFLP.A)
#This gives the frequencies of upper and lower infected leaves on each date in two different data frames
# i then rename the columns mostly to make it easier for myself
DFP.A
DFLP.A
colnames(dfa)[which(names(dfa) == "Var1")] <- "Date"
colnames(dfa)[which(names(dfa) == "Var2")] <- "infected"
colnames(dfa)[which(names(dfa) == "Freq")] <- "Upper_infected"
# i remove the Unifected ones from the data frames (those that have a 0)
dfa<-dfa[dfa$infected!="0",]
dfa <- subset(dfa, select = - infected)
colnames(dfb)[which(names(dfb) == "Var1")] <- "Date"
colnames(dfb)[which(names(dfb) == "Var2")] <- "infected"
colnames(dfb)[which(names(dfb) == "Freq")] <- "Lower_infected"
dfb<-dfb[dfb$infected!="0",]
dfb <- subset(dfb, select = - infected)
dfc<- merge(dfa,dfb, by = "Date")
# melt the dataframe to make it more easily graphed
library(reshape)
dfd <- melt(dfc, id=c("Date"))
# now attempt the graphs finally
ggplot(dfd, aes(factor(Date), value, fill = variable )) +
geom_bar(stat="identity", position = "dodge") +
scale_fill_brewer(palette = "Set1")
The final grouped bar chart