在顺序层的 UpSampling2D 层中不理解填充

Padding not being understood in the UpSampling2D layer of a sequential layer

我正在使用顺序 keras API 构建 CNN 模型,但在第 12 行出现以下错误 (model.add(UpSampling2D((2, 2), padding='same')))

TypeError: ('Keyword argument not understood:', 'padding')

我正在使用 Keras 2.2.4 和 Tensorflow 1.12.0

关于为什么会发生这种情况有什么想法吗?

我的代码是:

# Fit regression DNN model 
print("Creating/Training CNN")
model = Sequential()
model.add( Conv2D(16, (3, 3), input_shape=(128,128,1), activation='relu', padding = 'same') )
model.add(MaxPooling2D((2, 2), padding='same'))
model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(MaxPooling2D((2, 2), padding='same'))
model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(MaxPooling2D((2, 2), padding='same', name = 'grab_that'))

model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(UpSampling2D((2, 2), padding='same'))
model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(UpSampling2D((2, 2), padding='same'))
model.add( Conv2D(16, (3, 3), activation='relu', padding='same') )
model.add(UpSampling2D((2, 2), padding='same'))
model.add( Conv2D(1, (3, 3), activation='sigmoid', padding='same') )
model.compile(optimizer='adadelta', loss='binary_crossentropy', metrics=[binary_accuracy])
history = model.fit(data_train,data_train,verbose=1,epochs=1)

发生这种情况是因为 UpSampling2D 层没有这样的参数。只有卷积层有它(参见 docs)。