在 python 中用 numpy 识别一列中具有相同值的向量
Identify vectors with same value in one column with numpy in python
我有一个很大的二维向量数组。我想根据其中一个向量的元素或维度将这个数组拆分成几个数组。如果此列中的值连续相同,我希望收到一个这样的小数组。例如考虑第三个维度或列:
orig = np.array([[1, 2, 3],
[3, 4, 3],
[5, 6, 4],
[7, 8, 4],
[9, 0, 4],
[8, 7, 3],
[6, 5, 3]])
我想变成三个数组,由第 1,2 行和第 3,4,5 行和第 6,7 行组成:
>>> a
array([[1, 2, 3],
[3, 4, 3]])
>>> b
array([[5, 6, 4],
[7, 8, 4],
[9, 0, 4]])
>>> c
array([[8, 7, 3],
[6, 5, 3]])
我是 python 和 numpy 的新手。任何帮助将不胜感激。
问候
垫子
编辑:我重新格式化数组以澄清问题
这里没什么特别的,但是这个好的老式循环应该可以解决问题
import numpy as np
a = np.array([[1, 2, 3],
[1, 2, 3],
[1, 2, 4],
[1, 2, 4],
[1, 2, 4],
[1, 2, 3],
[1, 2, 3]])
groups = []
rows = a[0]
prev = a[0][-1] # here i assume that the grouping is based on the last column, change the index accordingly if that is not the case.
for row in a[1:]:
if row[-1] == prev:
rows = np.vstack((rows, row))
else:
groups.append(rows)
rows = [row]
prev = row[-1]
groups.append(rows)
print groups
## [array([[1, 2, 3],
## [1, 2, 3]]),
## array([[1, 2, 4],
## [1, 2, 4],
## [1, 2, 4]]),
## array([[1, 2, 3],
## [1, 2, 3]])]
使用np.split
:
>>> a, b, c = np.split(orig, np.where(orig[:-1, 2] != orig[1:, 2])[0]+1)
>>> a
array([[1, 2, 3],
[1, 2, 3]])
>>> b
array([[1, 2, 4],
[1, 2, 4],
[1, 2, 4]])
>>> c
array([[1, 2, 3],
[1, 2, 3]])
如果 a
看起来像这样:
array([[1, 1, 2, 3],
[2, 1, 2, 3],
[3, 1, 2, 4],
[4, 1, 2, 4],
[5, 1, 2, 4],
[6, 1, 2, 3],
[7, 1, 2, 3]])
比这个
col = a[:, -1]
indices = np.where(col[:-1] != col[1:])[0] + 1
indices = np.concatenate(([0], indices, [len(a)]))
res = [a[start:end] for start, end in zip(indices[:-1], indices[1:])]
print(res)
结果:
[array([[1, 2, 3],
[1, 2, 3]]), array([[1, 2, 4],
[1, 2, 4],
[1, 2, 4]]), array([[1, 2, 3],
[1, 2, 3]])]
更新:np.split()
好多了。无需添加第一个和最后一个索引:
col = a[:, -1]
indices = np.where(col[:-1] != col[1:])[0] + 1
res = np.split(a, indices)
我有一个很大的二维向量数组。我想根据其中一个向量的元素或维度将这个数组拆分成几个数组。如果此列中的值连续相同,我希望收到一个这样的小数组。例如考虑第三个维度或列:
orig = np.array([[1, 2, 3],
[3, 4, 3],
[5, 6, 4],
[7, 8, 4],
[9, 0, 4],
[8, 7, 3],
[6, 5, 3]])
我想变成三个数组,由第 1,2 行和第 3,4,5 行和第 6,7 行组成:
>>> a
array([[1, 2, 3],
[3, 4, 3]])
>>> b
array([[5, 6, 4],
[7, 8, 4],
[9, 0, 4]])
>>> c
array([[8, 7, 3],
[6, 5, 3]])
我是 python 和 numpy 的新手。任何帮助将不胜感激。
问候 垫子
编辑:我重新格式化数组以澄清问题
这里没什么特别的,但是这个好的老式循环应该可以解决问题
import numpy as np
a = np.array([[1, 2, 3],
[1, 2, 3],
[1, 2, 4],
[1, 2, 4],
[1, 2, 4],
[1, 2, 3],
[1, 2, 3]])
groups = []
rows = a[0]
prev = a[0][-1] # here i assume that the grouping is based on the last column, change the index accordingly if that is not the case.
for row in a[1:]:
if row[-1] == prev:
rows = np.vstack((rows, row))
else:
groups.append(rows)
rows = [row]
prev = row[-1]
groups.append(rows)
print groups
## [array([[1, 2, 3],
## [1, 2, 3]]),
## array([[1, 2, 4],
## [1, 2, 4],
## [1, 2, 4]]),
## array([[1, 2, 3],
## [1, 2, 3]])]
使用np.split
:
>>> a, b, c = np.split(orig, np.where(orig[:-1, 2] != orig[1:, 2])[0]+1)
>>> a
array([[1, 2, 3],
[1, 2, 3]])
>>> b
array([[1, 2, 4],
[1, 2, 4],
[1, 2, 4]])
>>> c
array([[1, 2, 3],
[1, 2, 3]])
如果 a
看起来像这样:
array([[1, 1, 2, 3],
[2, 1, 2, 3],
[3, 1, 2, 4],
[4, 1, 2, 4],
[5, 1, 2, 4],
[6, 1, 2, 3],
[7, 1, 2, 3]])
比这个
col = a[:, -1]
indices = np.where(col[:-1] != col[1:])[0] + 1
indices = np.concatenate(([0], indices, [len(a)]))
res = [a[start:end] for start, end in zip(indices[:-1], indices[1:])]
print(res)
结果:
[array([[1, 2, 3],
[1, 2, 3]]), array([[1, 2, 4],
[1, 2, 4],
[1, 2, 4]]), array([[1, 2, 3],
[1, 2, 3]])]
更新:np.split()
好多了。无需添加第一个和最后一个索引:
col = a[:, -1]
indices = np.where(col[:-1] != col[1:])[0] + 1
res = np.split(a, indices)