通过将 EFLAGS.VM 设置为 1 从 32 位保护模式切换到 v8086 模式时出现问题
Problem switching to v8086 mode from 32-bit protected mode by setting EFLAGS.VM to 1
我处于 32 位保护模式 运行正在当前特权级别 (CPL=0)。我正在尝试通过将 EFLAGS.VM(位 17)标志设置为 1(并将 IOPL 设置为 0)并对我的 16 位实模式代码执行 FAR JMP 来进入 v8086 模式。我使用 PUSHF
; set EFLAGS.VM (bit 17) to 1; set EFLAGS.IOPL (bit 22 and bit 23) to 0; set the new EFLAGS with POPF
获取当前标志。代码如下:
bits 32
cli
[snip]
pushf ; Get current EFLAGS
pop eax
or eax, 1<<EFLAGS_VM_BIT ; Set VM flag to enter v8086 mode
and eax, ~(3<<EFLAGS_IOPL_BITS)
; Set IOPL to 0
; IF flag already 0 because of earlier CLI
push eax
popf ; Reload new flags
jmp CODE32_SEL:v86_mode_entry
; Far JMP to v8086 entry point
; v8086 code entry point
bits 16
v86_mode_entry:
hlt ; Halt should double fault
[snip]
为了这些测试我特意 运行:
- 始终在 CPL=0 时中断。
- 在 v8086 模式下 运行ning 时中断。
- 我没有 IDT。
- 我没有 TSS,因为我没有通过中断、门和异常在特权级别之间转换。
为了测试我是否进入了 v8086 模式,我执行了 HLT
指令。由于我没有适当的中断机制,我预计会发生双重故障。 hlt
似乎正确执行并且系统就在那里。在 BOCHs 中,当我到达 hlt
时,我注意到标志是:
eflags 0x00000046: id vip vif ac vm rf nt IOPL=0 of df if tf sf ZF af PF cf
EFLAGS.VM 标志被标记为关闭 (0),因为它被列为 vm
而不是 VM
。这不是我所期望的。
问题:
- 我的代码有什么问题,进入 v8086 模式和
hlt
双重错误如何更正?
- 是否可以在64位模式或32位兼容模式(长模式的子模式)下进入v8086模式?
此代码的最小完整可验证示例是进入保护模式并执行上述任务的引导加载程序:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_IOPL_BITS EQU 12 ; EFLAGS IOPL bits (bit 12 and bit 13)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
hlt ; Halt
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
pushf ; Get current EFLAGS
pop eax
or eax, 1<<EFLAGS_VM_BIT ; Set VM flag to enter v8086 mode
and eax, ~(3<<EFLAGS_IOPL_BITS)
; Set IOPL to 0
; IF flag already 0 because of earlier CLI
push eax
popf ; Reload new flags
jmp CODE32_SEL:v86_mode_entry
; Far JMP to v8086 entry point
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
end_of_gdt:
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
可以使用以下方式生成引导加载程序:
nasm -f bin v86.asm -o v86.bin
在 QEMU 中可以是 运行:
qemu-system-i386 -fda v86.bin
TL;DR :
问题 #1:
POPF
实际上不允许您根据指令集架构参考更改 VM 标志:
When operating in protected, compatibility, or 64-bit mode at privilege level 0 (or in real-address mode, the equivalent to privilege level 0), all non-reserved flags in the EFLAGS register except RF1, VIP, VIF, and VM may be modified. VIP, VIF and VM remain unaffected.
有两种通用机制可用于设置EFLAGS.VM和enter v8086 mode:
A task switch to an 80386 task loads the image of EFLAGS from the new TSS. The TSS of the new task must be an 80386 TSS, not an 80286 TSS, because the 80286 TSS does not store the high-order word of EFLAGS, which contains the VM flag. A value of one in the VM bit of the new EFLAGS indicates that the new task is executing 8086 instructions; therefore, while loading the segment registers from the TSS, - the processor forms base addresses as the 8086 would.
An IRET from a procedure of an 80386 task loads the image of EFLAGS from the stack. A value of one in VM in this case indicates that the procedure to which control is being returned is an 8086 procedure. The CPL at the time the IRET is executed must be zero, else the processor does not change VM.
问题 #2:
v8086 模式仅适用于处于 32 位保护模式(传统模式)的 x86-64 处理器。您不能在 64 位模式或 32 位(或 16 位)兼容模式下使用它。您必须将处理器从长模式切换到 CPL=0 时进入 32 位保护模式(传统模式)运行,然后执行上述两种方法之一。这是一项昂贵的(性能方面的)任务,并且充满了问题。完成后您必须切换回长模式。
如果有一些用例可以执行此操作,并且您在具有多个内核的系统上 - 您可以在 32 位保护模式下启动其中一个内核,而Bootstrap 处理器 (BSP) 以长模式运行。
方法一:使用IRET进入v8086模式
这是最简单的解决方案。如果您从 32 位保护模式(在 CPL=0 中)执行 IRET
并且设置了堆栈上的 EFLAGS.VM 寄存器,则 CPU 将尝试 return 到v8086 模式并假定堆栈帧包含进行该转换所需的信息:
PROTECTED-MODE:
[snip]
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
[snip]
RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF EIP not within CS limit
THEN #GP(0); FI;
EFLAGS ← tempEFLAGS;
ESP ← Pop();
SS ← Pop(); (* Pop 2 words; throw away high-order word *)
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)
END;
如果以相反的顺序将这些项目压入堆栈并执行 iret
您应该能够进入 v8086 模式。
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved , always 1)
[snip]
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
我在 V86_STACK_SEG:V86_STACK_OFS 处设置了 ES=DS=CS=FS=GS=0 和实模式堆栈(根据您的需要定义它们)。 IP 设置为 v86_mode_entry
标签的偏移量。在上面的代码片段中,我只将 2 位设置为 1(位 1 和 VM)。位 1 是 EFLAGS 中的保留位,始终假定设置为 1。EFLAGS 中的所有其他标志均为 0,因此 IOPL=0。
所有其他寄存器将包含它们在进入 v8086 模式之前的相同值。您可能希望将它们清零以避免将信息从 32 位保护模式(即内核)泄漏到 v8086 任务中。
使用此代码的最小完整可验证示例是:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
end_of_gdt:
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
可以修改此示例代码来执行 hlt
并且它会出现双重错误。它确实可以正确进入 v8086 模式。我在 32 位保护模式下打印一个字符串,在进入 v8086 模式后打印一个字符串。由于 IOPL=0,实模式代码不使用任何特权指令,也不使用任何对中断标志 (IF) 敏感的指令,也不执行端口 IO。如果没有 VM Monitor(支持 v8086 模式的 GPF 处理程序),您将只能使用非特权和非中断标志敏感指令。由于INT指令是IF敏感的,BIOS不能使用。我直接把字符写到显示器上。
方法二:使用硬件任务切换进入v8086模式
如果您没有在 OS 中使用硬件任务切换,我不建议您使用此机制。如果您已选择使用硬件任务切换,那么使用此方法很有意义。1
如果使用硬件任务切换进入 v8086 模式,则需要一个 TSS 结构和 GDT 中的一个 TSS 条目。 GDT 中的 TSS 条目用于指定包含 TSS 的段的基数和限制。 GDT条目通常定义为:
最初标记为可用的 32 位 TSS descriptor 类型为 0x09; S
位(系统段)设置为0; P
位为 1; G
位设置为 0(字节粒度);其余标志位设置为 0。对于 v8086 任务,我们希望描述符特权级别 (DPL) 为 0。这导致访问字节为 0x89,标志字节为 0x00。
TSS 结构本身可以遵循此相关 中建议的结构类型。对于下面的示例,我们不会使用 IO 端口位图,因此我将 TSS_IO_BITMAP_SIZE
设置为 0。
一旦创建了适当的结构,就可以用 v8086 任务所需的寄存器状态填充 TSS。这将包括 CS:IP,其中将在 v8086 任务中开始执行。要进入 v8086 任务,只需通过 TSS 选择器执行 FAR JMP:
jmp TSS32_SEL:0 ; Transfer control to v8086 mode and our real mode code
通过 TSS 选择器跳转时忽略偏移量。我使用 0 值作为偏移量,但它可以设置为任何值。此 FAR JMP 将使用 TSS 选择器加载任务寄存器并将任务标记为 busy;根据 TSS 结构设置 CPU 状态;将控制权转移给任务。一个最小的完整示例如下:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
TSS_IO_BITMAP_SIZE EQU 0 ; Size 0 disables IO port bitmap (no permission)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
mov ecx, TSS_SIZE ; Zero out entire TSS structure
mov edi, tss_entry
xor eax, eax
rep stosb
; v8086 stack SS:SP (grows down from SS:SP)
mov dword [tss_entry.ss], V86_STACK_SEG
mov dword [tss_entry.esp], V86_STACK_OFS
mov dword [tss_entry.eflags], 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. We don't want interrupts enabled upon entry to
; v8086 because we have no v8086 monitor (a protected mode
; GPF handler)
; Set Real Mode CS:EIP to start execution at
mov dword [tss_entry.cs], V86_CS_SEG
mov dword [tss_entry.eip], v86_mode_entry
; Set iomap_base in tss with the offset of the iomap relative to beginning of the tss
mov word [tss_entry.iomap_base], tss_entry.iomap-tss_entry
%if TSS_IO_BITMAP_SIZE > 0
; If using an IO Bitmap then a padding byte has to be set to 0xff at end of bitmap
mov byte [tss_entry.iomap_pad], 0xff
%endif
jmp TSS32_SEL:0 ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_tss:
dq MAKE_GDT_DESC(tss_entry, TSS_SIZE-1, 10001001b, 0000b)
; 32-bit TSS, 1b gran, available, IOPL=0
end_of_gdt:
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
TSS32_SEL equ gdt32_tss - gdt_start
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
; Data section above bootloader @ 0x7c00. Acts like a BSS section
ABSOLUTE 0x7e00
; Store the TSS just beyond the boot signature read into memory
; at 0x0000:0x7e00
tss_entry:
.back_link: resd 1
.esp0: resd 1 ; Kernel stack pointer used on ring transitions
.ss0: resd 1 ; Kernel stack segment used on ring transitions
.esp1: resd 1
.ss1: resd 1
.esp2: resd 1
.ss2: resd 1
.cr3: resd 1
.eip: resd 1
.eflags: resd 1
.eax: resd 1
.ecx: resd 1
.edx: resd 1
.ebx: resd 1
.esp: resd 1
.ebp: resd 1
.esi: resd 1
.edi: resd 1
.es: resd 1
.cs: resd 1
.ss: resd 1
.ds: resd 1
.fs: resd 1
.gs: resd 1
.ldt: resd 1
.trap: resw 1
.iomap_base:resw 1 ; IOPB offset
;.cetssp: resd 1 ; Need this if CET is enabled
; Insert any kernel defined task instance data here
; ...
; If using VME (Virtual Mode extensions) there need to bean additional 32 bytes
; available immediately preceding iomap. If using VME uncomment next 2 lines
;.vmeintmap: ; If VME enabled uncomment this line and the next
; resb 32 ; 32*8 bits = 256 bits (one bit for each interrupt)
.iomap: resb TSS_IO_BITMAP_SIZE ; IO bitmap (IOPB) size 8192 (8*8192=65536) representing
; all ports. An IO bitmap size of 0 would fault all IO
; port access if IOPL < CPL (CPL=3 with v8086)
%if TSS_IO_BITMAP_SIZE > 0
.iomap_pad: resb 1 ; Padding byte that has to be filled with 0xff
; To deal with issues on some CPUs when using an IOPB
%endif
TSS_SIZE EQU $-tss_entry
注释
- 1依赖硬件任务切换很难移植到其他CPU; x86 CPU 未针对硬件任务切换进行优化; FPU 和 SIMD 状态不被保留;性能可能比通过软件编写任务切换慢。 x86-64 处理器上的长模式甚至不支持硬件任务切换。 x86 上的现代 OSes 运行 通常不使用 CPU 的硬件任务切换。
这个答案必须与第一个答案分开,因为超过了 post 限制。
方法 3:使用 IRET 和 TSS 结构
此方法实际上与方法#1相同。使用 IRET 进入 v8086 模式,但我们在 GDT 中创建了一个 TSS 结构和一个 32 位的 TSS 条目,如 Method #2。在没有硬件任务切换的情况下创建 TSS 允许我们在 运行 非特权 (CPL=1,2,3) 代码时指定 IO 端口位图,其中 IOPL < CPL。在多核系统上,内核通常会为每个处理器创建一个 TSS。
当 interrupt/call/trap 门将控制权从 CPL=1,2 转移到 CPL=0 时,CPU 将使用 .esp0
和 .ss0
字段作为内核堆栈,3.当 运行 代码在 CPL>0 且没有 TSS 时,您无法处理中断。 LTR
指令用于指定初始 TSS,而不进行实际的任务切换。 TSS 由 LTR.
标记为忙碌
以下最小的完整示例演示了此概念。对于此示例,IOPB 设置为允许端口访问前 0x400 个端口并拒绝其余端口访问:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
TSS_IO_BITMAP_SIZE EQU 0x400/8 ; IO Bitmap for 0x400 IO ports
; Size 0 disables IO port bitmap (no permission)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
mov ecx, TSS_SIZE ; Zero out entire TSS structure
mov edi, tss_entry
xor eax, eax
rep stosb
; Set iomap_base in tss with the offset of the iomap relative to beginning of the tss
mov word [tss_entry.iomap_base], tss_entry.iomap-tss_entry
mov eax, TSS32_SEL
ltr ax ; Load default TSS (used for exceptions, interrupts, etc)
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_tss:
dq MAKE_GDT_DESC(tss_entry, TSS_SIZE-1, 10001001b, 0000b)
; 32-bit TSS, 1b gran, available, IOPL=0
end_of_gdt:
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
TSS32_SEL equ gdt32_tss - gdt_start
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
; Data section above bootloader @ 0x7c00. Acts like a BSS section
ABSOLUTE 0x7e00
; Store the TSS just beyond the boot signature read into memory
; at 0x0000:0x7e00
tss_entry:
.back_link: resd 1
.esp0: resd 1 ; Kernel stack pointer used on ring transitions
.ss0: resd 1 ; Kernel stack segment used on ring transitions
.esp1: resd 1
.ss1: resd 1
.esp2: resd 1
.ss2: resd 1
.cr3: resd 1
.eip: resd 1
.eflags: resd 1
.eax: resd 1
.ecx: resd 1
.edx: resd 1
.ebx: resd 1
.esp: resd 1
.ebp: resd 1
.esi: resd 1
.edi: resd 1
.es: resd 1
.cs: resd 1
.ss: resd 1
.ds: resd 1
.fs: resd 1
.gs: resd 1
.ldt: resd 1
.trap: resw 1
.iomap_base:resw 1 ; IOPB offset
;.cetssp: resd 1 ; Need this if CET is enabled
; Insert any kernel defined task instance data here
; ...
; If using VME (Virtual Mode extensions) there need to bean additional 32 bytes
; available immediately preceding iomap. If using VME uncomment next 2 lines
;.vmeintmap: ; If VME enabled uncomment this line and the next
; resb 32 ; 32*8 bits = 256 bits (one bit for each interrupt)
.iomap: resb TSS_IO_BITMAP_SIZE ; IO bitmap (IOPB) size 8192 (8*8192=65536) representing
; all ports. An IO bitmap size of 0 would fault all IO
; port access if IOPL < CPL (CPL=3 with v8086)
%if TSS_IO_BITMAP_SIZE > 0
.iomap_pad: resb 1 ; Padding byte that has to be filled with 0xff
; To deal with issues on some CPUs when using an IOPB
%endif
TSS_SIZE EQU $-tss_entry
我处于 32 位保护模式 运行正在当前特权级别 (CPL=0)。我正在尝试通过将 EFLAGS.VM(位 17)标志设置为 1(并将 IOPL 设置为 0)并对我的 16 位实模式代码执行 FAR JMP 来进入 v8086 模式。我使用 PUSHF
; set EFLAGS.VM (bit 17) to 1; set EFLAGS.IOPL (bit 22 and bit 23) to 0; set the new EFLAGS with POPF
获取当前标志。代码如下:
bits 32
cli
[snip]
pushf ; Get current EFLAGS
pop eax
or eax, 1<<EFLAGS_VM_BIT ; Set VM flag to enter v8086 mode
and eax, ~(3<<EFLAGS_IOPL_BITS)
; Set IOPL to 0
; IF flag already 0 because of earlier CLI
push eax
popf ; Reload new flags
jmp CODE32_SEL:v86_mode_entry
; Far JMP to v8086 entry point
; v8086 code entry point
bits 16
v86_mode_entry:
hlt ; Halt should double fault
[snip]
为了这些测试我特意 运行:
- 始终在 CPL=0 时中断。
- 在 v8086 模式下 运行ning 时中断。
- 我没有 IDT。
- 我没有 TSS,因为我没有通过中断、门和异常在特权级别之间转换。
为了测试我是否进入了 v8086 模式,我执行了 HLT
指令。由于我没有适当的中断机制,我预计会发生双重故障。 hlt
似乎正确执行并且系统就在那里。在 BOCHs 中,当我到达 hlt
时,我注意到标志是:
eflags 0x00000046: id vip vif ac vm rf nt IOPL=0 of df if tf sf ZF af PF cf
EFLAGS.VM 标志被标记为关闭 (0),因为它被列为 vm
而不是 VM
。这不是我所期望的。
问题:
- 我的代码有什么问题,进入 v8086 模式和
hlt
双重错误如何更正? - 是否可以在64位模式或32位兼容模式(长模式的子模式)下进入v8086模式?
此代码的最小完整可验证示例是进入保护模式并执行上述任务的引导加载程序:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_IOPL_BITS EQU 12 ; EFLAGS IOPL bits (bit 12 and bit 13)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
hlt ; Halt
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
pushf ; Get current EFLAGS
pop eax
or eax, 1<<EFLAGS_VM_BIT ; Set VM flag to enter v8086 mode
and eax, ~(3<<EFLAGS_IOPL_BITS)
; Set IOPL to 0
; IF flag already 0 because of earlier CLI
push eax
popf ; Reload new flags
jmp CODE32_SEL:v86_mode_entry
; Far JMP to v8086 entry point
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
end_of_gdt:
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
可以使用以下方式生成引导加载程序:
nasm -f bin v86.asm -o v86.bin
在 QEMU 中可以是 运行:
qemu-system-i386 -fda v86.bin
TL;DR :
问题 #1:
POPF
实际上不允许您根据指令集架构参考更改 VM 标志:
When operating in protected, compatibility, or 64-bit mode at privilege level 0 (or in real-address mode, the equivalent to privilege level 0), all non-reserved flags in the EFLAGS register except RF1, VIP, VIF, and VM may be modified. VIP, VIF and VM remain unaffected.
有两种通用机制可用于设置EFLAGS.VM和enter v8086 mode:
A task switch to an 80386 task loads the image of EFLAGS from the new TSS. The TSS of the new task must be an 80386 TSS, not an 80286 TSS, because the 80286 TSS does not store the high-order word of EFLAGS, which contains the VM flag. A value of one in the VM bit of the new EFLAGS indicates that the new task is executing 8086 instructions; therefore, while loading the segment registers from the TSS, - the processor forms base addresses as the 8086 would.
An IRET from a procedure of an 80386 task loads the image of EFLAGS from the stack. A value of one in VM in this case indicates that the procedure to which control is being returned is an 8086 procedure. The CPL at the time the IRET is executed must be zero, else the processor does not change VM.
问题 #2:
v8086 模式仅适用于处于 32 位保护模式(传统模式)的 x86-64 处理器。您不能在 64 位模式或 32 位(或 16 位)兼容模式下使用它。您必须将处理器从长模式切换到 CPL=0 时进入 32 位保护模式(传统模式)运行,然后执行上述两种方法之一。这是一项昂贵的(性能方面的)任务,并且充满了问题。完成后您必须切换回长模式。
如果有一些用例可以执行此操作,并且您在具有多个内核的系统上 - 您可以在 32 位保护模式下启动其中一个内核,而Bootstrap 处理器 (BSP) 以长模式运行。
方法一:使用IRET进入v8086模式
这是最简单的解决方案。如果您从 32 位保护模式(在 CPL=0 中)执行 IRET
并且设置了堆栈上的 EFLAGS.VM 寄存器,则 CPU 将尝试 return 到v8086 模式并假定堆栈帧包含进行该转换所需的信息:
PROTECTED-MODE: [snip] EIP ← Pop(); CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *) tempEFLAGS ← Pop(); [snip] RETURN-TO-VIRTUAL-8086-MODE: (* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *) IF EIP not within CS limit THEN #GP(0); FI; EFLAGS ← tempEFLAGS; ESP ← Pop(); SS ← Pop(); (* Pop 2 words; throw away high-order word *) ES ← Pop(); (* Pop 2 words; throw away high-order word *) DS ← Pop(); (* Pop 2 words; throw away high-order word *) FS ← Pop(); (* Pop 2 words; throw away high-order word *) GS ← Pop(); (* Pop 2 words; throw away high-order word *) CPL ← 3; (* Resume execution in Virtual-8086 mode *) END;
如果以相反的顺序将这些项目压入堆栈并执行 iret
您应该能够进入 v8086 模式。
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved , always 1)
[snip]
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
我在 V86_STACK_SEG:V86_STACK_OFS 处设置了 ES=DS=CS=FS=GS=0 和实模式堆栈(根据您的需要定义它们)。 IP 设置为 v86_mode_entry
标签的偏移量。在上面的代码片段中,我只将 2 位设置为 1(位 1 和 VM)。位 1 是 EFLAGS 中的保留位,始终假定设置为 1。EFLAGS 中的所有其他标志均为 0,因此 IOPL=0。
所有其他寄存器将包含它们在进入 v8086 模式之前的相同值。您可能希望将它们清零以避免将信息从 32 位保护模式(即内核)泄漏到 v8086 任务中。
使用此代码的最小完整可验证示例是:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
end_of_gdt:
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
可以修改此示例代码来执行 hlt
并且它会出现双重错误。它确实可以正确进入 v8086 模式。我在 32 位保护模式下打印一个字符串,在进入 v8086 模式后打印一个字符串。由于 IOPL=0,实模式代码不使用任何特权指令,也不使用任何对中断标志 (IF) 敏感的指令,也不执行端口 IO。如果没有 VM Monitor(支持 v8086 模式的 GPF 处理程序),您将只能使用非特权和非中断标志敏感指令。由于INT指令是IF敏感的,BIOS不能使用。我直接把字符写到显示器上。
方法二:使用硬件任务切换进入v8086模式
如果您没有在 OS 中使用硬件任务切换,我不建议您使用此机制。如果您已选择使用硬件任务切换,那么使用此方法很有意义。1
如果使用硬件任务切换进入 v8086 模式,则需要一个 TSS 结构和 GDT 中的一个 TSS 条目。 GDT 中的 TSS 条目用于指定包含 TSS 的段的基数和限制。 GDT条目通常定义为:
最初标记为可用的 32 位 TSS descriptor 类型为 0x09; S
位(系统段)设置为0; P
位为 1; G
位设置为 0(字节粒度);其余标志位设置为 0。对于 v8086 任务,我们希望描述符特权级别 (DPL) 为 0。这导致访问字节为 0x89,标志字节为 0x00。
TSS 结构本身可以遵循此相关 TSS_IO_BITMAP_SIZE
设置为 0。
一旦创建了适当的结构,就可以用 v8086 任务所需的寄存器状态填充 TSS。这将包括 CS:IP,其中将在 v8086 任务中开始执行。要进入 v8086 任务,只需通过 TSS 选择器执行 FAR JMP:
jmp TSS32_SEL:0 ; Transfer control to v8086 mode and our real mode code
通过 TSS 选择器跳转时忽略偏移量。我使用 0 值作为偏移量,但它可以设置为任何值。此 FAR JMP 将使用 TSS 选择器加载任务寄存器并将任务标记为 busy;根据 TSS 结构设置 CPU 状态;将控制权转移给任务。一个最小的完整示例如下:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
TSS_IO_BITMAP_SIZE EQU 0 ; Size 0 disables IO port bitmap (no permission)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
mov ecx, TSS_SIZE ; Zero out entire TSS structure
mov edi, tss_entry
xor eax, eax
rep stosb
; v8086 stack SS:SP (grows down from SS:SP)
mov dword [tss_entry.ss], V86_STACK_SEG
mov dword [tss_entry.esp], V86_STACK_OFS
mov dword [tss_entry.eflags], 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. We don't want interrupts enabled upon entry to
; v8086 because we have no v8086 monitor (a protected mode
; GPF handler)
; Set Real Mode CS:EIP to start execution at
mov dword [tss_entry.cs], V86_CS_SEG
mov dword [tss_entry.eip], v86_mode_entry
; Set iomap_base in tss with the offset of the iomap relative to beginning of the tss
mov word [tss_entry.iomap_base], tss_entry.iomap-tss_entry
%if TSS_IO_BITMAP_SIZE > 0
; If using an IO Bitmap then a padding byte has to be set to 0xff at end of bitmap
mov byte [tss_entry.iomap_pad], 0xff
%endif
jmp TSS32_SEL:0 ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_tss:
dq MAKE_GDT_DESC(tss_entry, TSS_SIZE-1, 10001001b, 0000b)
; 32-bit TSS, 1b gran, available, IOPL=0
end_of_gdt:
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
TSS32_SEL equ gdt32_tss - gdt_start
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
; Data section above bootloader @ 0x7c00. Acts like a BSS section
ABSOLUTE 0x7e00
; Store the TSS just beyond the boot signature read into memory
; at 0x0000:0x7e00
tss_entry:
.back_link: resd 1
.esp0: resd 1 ; Kernel stack pointer used on ring transitions
.ss0: resd 1 ; Kernel stack segment used on ring transitions
.esp1: resd 1
.ss1: resd 1
.esp2: resd 1
.ss2: resd 1
.cr3: resd 1
.eip: resd 1
.eflags: resd 1
.eax: resd 1
.ecx: resd 1
.edx: resd 1
.ebx: resd 1
.esp: resd 1
.ebp: resd 1
.esi: resd 1
.edi: resd 1
.es: resd 1
.cs: resd 1
.ss: resd 1
.ds: resd 1
.fs: resd 1
.gs: resd 1
.ldt: resd 1
.trap: resw 1
.iomap_base:resw 1 ; IOPB offset
;.cetssp: resd 1 ; Need this if CET is enabled
; Insert any kernel defined task instance data here
; ...
; If using VME (Virtual Mode extensions) there need to bean additional 32 bytes
; available immediately preceding iomap. If using VME uncomment next 2 lines
;.vmeintmap: ; If VME enabled uncomment this line and the next
; resb 32 ; 32*8 bits = 256 bits (one bit for each interrupt)
.iomap: resb TSS_IO_BITMAP_SIZE ; IO bitmap (IOPB) size 8192 (8*8192=65536) representing
; all ports. An IO bitmap size of 0 would fault all IO
; port access if IOPL < CPL (CPL=3 with v8086)
%if TSS_IO_BITMAP_SIZE > 0
.iomap_pad: resb 1 ; Padding byte that has to be filled with 0xff
; To deal with issues on some CPUs when using an IOPB
%endif
TSS_SIZE EQU $-tss_entry
注释
- 1依赖硬件任务切换很难移植到其他CPU; x86 CPU 未针对硬件任务切换进行优化; FPU 和 SIMD 状态不被保留;性能可能比通过软件编写任务切换慢。 x86-64 处理器上的长模式甚至不支持硬件任务切换。 x86 上的现代 OSes 运行 通常不使用 CPU 的硬件任务切换。
这个答案必须与第一个答案分开,因为超过了 post 限制。
方法 3:使用 IRET 和 TSS 结构
此方法实际上与方法#1相同。使用 IRET 进入 v8086 模式,但我们在 GDT 中创建了一个 TSS 结构和一个 32 位的 TSS 条目,如 Method #2。在没有硬件任务切换的情况下创建 TSS 允许我们在 运行 非特权 (CPL=1,2,3) 代码时指定 IO 端口位图,其中 IOPL < CPL。在多核系统上,内核通常会为每个处理器创建一个 TSS。
当 interrupt/call/trap 门将控制权从 CPL=1,2 转移到 CPL=0 时,CPU 将使用 .esp0
和 .ss0
字段作为内核堆栈,3.当 运行 代码在 CPL>0 且没有 TSS 时,您无法处理中断。 LTR
指令用于指定初始 TSS,而不进行实际的任务切换。 TSS 由 LTR.
以下最小的完整示例演示了此概念。对于此示例,IOPB 设置为允许端口访问前 0x400 个端口并拒绝其余端口访问:
VIDEO_TEXT_ADDR EQU 0xb8000 ; Hard code beginning of text video memory
ATTR_BWHITE_ON_GREEN EQU 0x2f ; Bright white on green attribute
ATTR_BWHITE_ON_MAGENTA EQU 0x5f ; Bright White on magenta attribute
PM_MODE_STACK EQU 0x80000 ; Protected mode stack below EBDA
V86_STACK_SEG EQU 0x0000 ; v8086 stack SS
V86_STACK_OFS EQU 0x0000 ; v8086 stack SP
V86_CS_SEG EQU 0x0000 ; v8086 code segment CS
EFLAGS_VM_BIT EQU 17 ; EFLAGS VM bit
EFLAGS_BIT1 EQU 1 ; EFLAGS bit 1 (reserved, always 1)
EFLAGS_IF_BIT EQU 9 ; EFLAGS IF bit
TSS_IO_BITMAP_SIZE EQU 0x400/8 ; IO Bitmap for 0x400 IO ports
; Size 0 disables IO port bitmap (no permission)
; Macro to build a GDT descriptor entry
%define MAKE_GDT_DESC(base, limit, access, flags) \
(((base & 0x00FFFFFF) << 16) | \
((base & 0xFF000000) << 32) | \
(limit & 0x0000FFFF) | \
((limit & 0x000F0000) << 32) | \
((access & 0xFF) << 40) | \
((flags & 0x0F) << 52))
bits 16
ORG 0x7c00
; Include a BPB (1.44MB floppy with FAT12) to be more compatible with USB floppy media
; %include "bpb.inc"
boot_start:
xor ax, ax ; DS=SS=ES=0
mov ds, ax
mov ss, ax ; Stack at 0x0000:0x7c00
mov sp, 0x7c00
cld ; Set string instructions to use forward movement
; Fast method of enabling A20 may not work on all x86 BIOSes
; It is good enough for emulators and most modern BIOSes
; See: https://wiki.osdev.org/A20_Line
cli ; Disable interrupts for rest of code as we don't
; want A20 code to be interrupted. In protected mode
; we have no IDT so any interrupt that does occur will
; double fault and reboot.
in al, 0x92
or al, 2
out 0x92, al ; Enable A20 using Fast Method
lgdt [gdtr] ; Load our GDT
mov eax, cr0
or eax, 1
mov cr0, eax ; Set protected mode flag
jmp CODE32_SEL:start32 ; FAR JMP to set CS
; v8086 code entry point
v86_mode_entry:
sub dword [vidmem_ptr], VIDEO_TEXT_ADDR
; Adjust video pointer to be relative to beginning of
; segment 0xb800
mov si, in_v86_msg ; Print in v86 message
mov ah, ATTR_BWHITE_ON_MAGENTA
; Attribute to print with
call print_string_rm_nobios
.endloop:
jmp $ ; Infinite loop since we did code a solution to exit VM
; Function: print_string_rm_nobios
; Display a string to the console on display page 0 in real/v8086 mode
; without using the BIOS. We don't have a proper v8086 monitor so can't
; use BIOS to display.
;
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: SI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_rm_nobios:
push di
push si
push ax
push es
mov di, VIDEO_TEXT_ADDR>>4 ; ES=0xb800 (text video mode segment)
mov es, di
mov di, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go output character
mov [vidmem_ptr], di ; Update global video pointer
pop es
pop ax
pop si
pop di
ret
; 32-bit protected mode entry point
bits 32
start32:
mov ax, DATA32_SEL ; Setup the segment registers with data selector
mov ds, ax
mov es, ax
mov ss, ax
mov esp, PM_MODE_STACK ; Set protected mode stack pointer
mov fs, ax ; Not currently using FS and GS
mov gs, ax
mov ah, ATTR_BWHITE_ON_GREEN; Attribute to print with
mov al, ah ; Attribute to clear last line when scrolling
mov esi, in_pm_msg ; Print message that we are in protected mode
call print_string_pm
mov ecx, TSS_SIZE ; Zero out entire TSS structure
mov edi, tss_entry
xor eax, eax
rep stosb
; Set iomap_base in tss with the offset of the iomap relative to beginning of the tss
mov word [tss_entry.iomap_base], tss_entry.iomap-tss_entry
mov eax, TSS32_SEL
ltr ax ; Load default TSS (used for exceptions, interrupts, etc)
xor ebx, ebx ; EBX=0
push ebx ; Real mode GS=0
push ebx ; Real mode FS=0
push ebx ; Real mode DS=0
push ebx ; Real mode ES=0
push V86_STACK_SEG
push V86_STACK_OFS ; v8086 stack SS:SP (grows down from SS:SP)
push dword 1<<EFLAGS_VM_BIT | 1<<EFLAGS_BIT1
; Set VM Bit, IF bit is off, DF=0(forward direction),
; IOPL=0, Reserved bit (bit 1) always 1. Everything
; else 0. These flags will be loaded in the v8086 mode
; during the IRET. We don't want interrupts enabled
; because we have no v86 monitor via protected mode
; GPF handler
push V86_CS_SEG ; Real Mode CS (segment)
push v86_mode_entry ; Entry point (offset)
iret ; Transfer control to v8086 mode and our real mode code
; Function: print_string_pm
; Display a string to the console on display page 0 in protected mode.
; Very basic. Doesn't update hardware cursor, doesn't handle scrolling,
; LF, CR, TAB.
;
; Inputs: ESI = Offset of address to print
; AH = Attribute of string to print
; Clobbers: None
; Returns: None
print_string_pm:
push edi
push esi
push eax
mov edi, [vidmem_ptr] ; Start from video address stored at vidmem_ptr
jmp .getchar
.outchar:
stosw ; Output character to video display
.getchar:
lodsb ; Load next character from string
test al, al ; Is character NUL?
jne .outchar ; If not, go back and output character
mov [vidmem_ptr], edi ; Update global video pointer
pop eax
pop esi
pop edi
ret
align 4
vidmem_ptr: dd VIDEO_TEXT_ADDR ; Start console output in upper left of display
in_pm_msg:
db "In 32-bit protected mode!", 0
in_v86_msg:
db "In v8086 mode!", 0
align 4
gdt_start:
dq MAKE_GDT_DESC(0, 0, 0, 0) ; null descriptor
gdt32_code:
dq MAKE_GDT_DESC(0, 0x000fffff, 10011010b, 1100b)
; 32-bit code, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_data:
dq MAKE_GDT_DESC(0, 0x000fffff, 10010010b, 1100b)
; 32-bit data, 4kb gran, limit 0xffffffff bytes, base=0
gdt32_tss:
dq MAKE_GDT_DESC(tss_entry, TSS_SIZE-1, 10001001b, 0000b)
; 32-bit TSS, 1b gran, available, IOPL=0
end_of_gdt:
CODE32_SEL equ gdt32_code - gdt_start
DATA32_SEL equ gdt32_data - gdt_start
TSS32_SEL equ gdt32_tss - gdt_start
gdtr:
dw end_of_gdt - gdt_start - 1
; limit (Size of GDT - 1)
dd gdt_start ; base of GDT
; Pad boot sector to 510 bytes and add 2 byte boot signature
TIMES 510-($-$$) db 0
dw 0xaa55
; Data section above bootloader @ 0x7c00. Acts like a BSS section
ABSOLUTE 0x7e00
; Store the TSS just beyond the boot signature read into memory
; at 0x0000:0x7e00
tss_entry:
.back_link: resd 1
.esp0: resd 1 ; Kernel stack pointer used on ring transitions
.ss0: resd 1 ; Kernel stack segment used on ring transitions
.esp1: resd 1
.ss1: resd 1
.esp2: resd 1
.ss2: resd 1
.cr3: resd 1
.eip: resd 1
.eflags: resd 1
.eax: resd 1
.ecx: resd 1
.edx: resd 1
.ebx: resd 1
.esp: resd 1
.ebp: resd 1
.esi: resd 1
.edi: resd 1
.es: resd 1
.cs: resd 1
.ss: resd 1
.ds: resd 1
.fs: resd 1
.gs: resd 1
.ldt: resd 1
.trap: resw 1
.iomap_base:resw 1 ; IOPB offset
;.cetssp: resd 1 ; Need this if CET is enabled
; Insert any kernel defined task instance data here
; ...
; If using VME (Virtual Mode extensions) there need to bean additional 32 bytes
; available immediately preceding iomap. If using VME uncomment next 2 lines
;.vmeintmap: ; If VME enabled uncomment this line and the next
; resb 32 ; 32*8 bits = 256 bits (one bit for each interrupt)
.iomap: resb TSS_IO_BITMAP_SIZE ; IO bitmap (IOPB) size 8192 (8*8192=65536) representing
; all ports. An IO bitmap size of 0 would fault all IO
; port access if IOPL < CPL (CPL=3 with v8086)
%if TSS_IO_BITMAP_SIZE > 0
.iomap_pad: resb 1 ; Padding byte that has to be filled with 0xff
; To deal with issues on some CPUs when using an IOPB
%endif
TSS_SIZE EQU $-tss_entry