Java 应用程序拒绝将输出显示为浮点数。尝试过 Casting,乘以 1.0,加 0.0,没有任何效果

Java Application refuses to display output as Floating Point. Have tried Casting, multiplying 1.0, adding 0.0, nothing works

问题:

我在计算整数除法和显示为双精度数(浮点数)时遇到问题。

在较低的数字下,它显示为浮点数,但似乎将值四舍五入为 11.0、9.0、28.0 之类的值。在尝试通过其他 StackO 帖子解决问题后,我似乎无法使其保持一致。我已经通过一些解决方案能够让它显示为浮点解决方案,但是 运行 通过测试命令,结果在显示为浮点或不显示时不一致。

作业要求:

编写一个程序 RandomWalkers.java,接受两个整数命令行参数 'r' 和 'trials'。在每个试验独立实验中,模拟随机游走,直到随机游走者距离起点位于曼哈顿距离 r 处。打印平均步数。

随着 'r' 的增加,我们预计随机游走者会采取越来越多的步数。但是还有多少步呢?使用 RandomWalkers.java 制定关于平均步数如何作为 'r'.

函数增长的假设

通过生成随机样本并汇总结果来估计未知量是 Monte Carlo 模拟的一个示例 — 一种广泛用于统计物理学、计算金融和计算机图形学的强大计算技术。

除了java.lang中的库函数(例如Integer.parseInt()Math.sqrt()),您不能调用库函数。仅使用课程中已介绍的 Java 功能(例如,循环和条件,但 不是数组 )。

我尝试过的:

有时我会有所突破,但后来我又测试了一点,但它失败了,部分或所有参数都传递给了应用程序。

代码:

下面的代码是代码的清理基础版本,减去了上面的任何测试。

public class RandomWalkers {

    public static void main(String[] args) {
        int r = Integer.parseInt(args[0]);
        int trials = Integer.parseInt(args[1]);
        int x = 0;
        int xx = 0;
        int y = 0;
        int yy = 0;
        int numSteps = 0;
        int totalNumSteps = 0;
        double randNum = 0.0;
        double avgSteps = 0.0;

        for (long i = 0; i < trials; i++) {
            while (Math.abs(x - xx) + Math.abs(y - yy) != r) {
                randNum = Math.random();
                if (randNum <= .25) {
                    // North
                    yy++;

                } else if (randNum <= .5) {
                    // East
                    xx++;

                } else if (randNum <= .75) {
                    // South
                    yy--;

                } else {
                    // West
                    xx--;

                }
                numSteps++;
            }
            totalNumSteps += numSteps;
        }

        avgSteps = totalNumSteps / trials;
        System.out.println("average number of steps = " + avgSteps);
    }

}

预期结果:

这是请求的参数,以及作业项目部分中提供的预期输出。

~/Desktop/loops> java RandomWalkers 5 1000000

平均步数 = 14.98188

~/Desktop/loops> java RandomWalkers 5 1000000

平均步数 = 14.93918

~/Desktop/loops> java RandomWalkers 10 100000

平均步数 = 59.37386

~/Desktop/loops> java RandomWalkers 20 100000

平均步数 = 235.6288

~/Desktop/loops> java RandomWalkers 40 100000

平均步数 = 949.14712

~/Desktop/loops> java RandomWalkers 80 100000

平均步数 = 3775.7152

~/Desktop/loops> java RandomWalkers 160 100000

平均步数 = 15113.61108

评分作业(实际结果)

测试 RandomWalkers 的正确性


运行 总共 7 次测试。

测试 1:检查输出格式

% java RandomWalkers 5 10000

平均步数 = 9.0

% java RandomWalkers 10 1000

平均步数 = 18.0

% java RandomWalkers 20 123456

平均步数 = 150.0

% java RandomWalkers 40 1

平均步数 = 726.0

% java RandomWalkers 1 10000

平均步数 = 1.0

% java RandomWalkers 0 333

平均步数 = 0.0

==> 通过

测试 2:检查平均步数(试验 = 10000) * java RandomWalkers 1 10000 * java RandomWalkers 2 10000 - 学生平均步数 = 2.000000 - 真实平均步数 = 2.6666666666666665 - 99.99% 置信区间 = [2.617080, 2.716254] - 正确的解决方案将在 10,000 次

中大约有 1 次因运气不佳而无法通过此测试

==> 失败

测试 3:检查平均步数(半径 = 5) * java RandomWalkers 5 100 - 学生平均步数 = 11.000000 - 真实平均步数 = 14.9775 - 99.99% 置信区间 = [11.226273, 18.728727] - 正确的解决方案将在 10,000 次

中大约有 1 次因运气不佳而无法通过此测试

==> 失败

测试 4:检查平均步数(半径 = 0) * java RandomWalkers 0 1000 * java RandomWalkers 0 100 * java RandomWalkers 0 1 ==> 通过

测试5:检查平均步数不是整数 * java RandomWalkers 10 1000 - 学生平均步数 = 70.0 - 正确的解决方案在 10,000

中失败的次数少于 1 次

==> 失败

测试 6:检查程序每次产生不同的结果 * java RandomWalkers 10 10000 [ repeated twice ] * java RandomWalkers 20 1000 [ repeated twice ] * java RandomWalkers 40 2000 [ repeated twice ] ==> 通过

测试 7:检查 trials = 1 时平均步数的随机性 * java RandomWalkers 2 1 [ repeated 1024 times ] * java RandomWalkers 3 1 [ repeated 8192 times ] * java RandomWalkers 4 1 [ repeated 65536 times ] * java RandomWalkers 5 1 [ repeated 1048576 times ] ==> 通过

RandomWalkers 总数:4/7 测试通过!

所以这里有两个问题。 1)正如 Carlos Heuberger 所指出的,您需要在每次循环中重新初始化变量。 2) 如您所述,将除法设为实数除法需要注意,而不是整数的 "div" 运算符。我对您的代码进行了这两项更改(for 循环中的前 5 行;(1.0 * trials)),它似乎通过了所有测试。 你很接近。

public class RandomWalkers {

public static void main(String[] args) {
    int r = Integer.parseInt(args[0]);
    int trials = Integer.parseInt(args[1]);
    int x = 0;
    int xx = 0;
    int y = 0;
    int yy = 0;
    int numSteps = 0;
    int totalNumSteps = 0;
    double randNum = 0.0;
    double avgSteps = 0.0;

    for (long i = 0; i < trials; i++) {
        x = 0;
        xx = 0;
        y = 0;
        yy = 0;
        numSteps = 0;
        while (Math.abs(x - xx) + Math.abs(y - yy) != r) {
            randNum = Math.random();
            if (randNum <= .25) {
                // North
                yy++;

            } else if (randNum <= .5) {
                // East
                xx++;

            } else if (randNum <= .75) {
                // South
                yy--;

            } else {
                // West
                xx--;

            }
            numSteps++;
        }
        totalNumSteps += numSteps;
    }

    avgSteps = totalNumSteps / (1.0 * trials);
    System.out.println("average number of steps = " + avgSteps);


   }

}

当变量被声明为远离它们的赋值或 use-site.

时,往往会发生此类错误

使用 Java Microbenchmark Harness(JMH) 我无法看到重新分配和重新声明变量之间明显的性能优势。

然而,当用 RANDOM.nextInt(4)switch

替换 Math.Random 时,我能够看到巨大的(超过 2 倍的加速)

import java.util.Random;

public class RandomWalkers {

    static final Random RANDOM = new Random();

    public static void main(final String[] args) {

        int r = Integer.parseInt(args[0]);

        int trials = Integer.parseInt(args[1]);

        int totalNumSteps = 0;

        for (long i = 0; i < trials; i++) {
            int x = 0;
            int xx = 0;
            int y = 0;
            int yy = 0;
            int numSteps = 0;

            while (Math.abs(x - xx) + Math.abs(y - yy) != r) {

                switch (RANDOM.nextInt(4)) {
                    case 0:
                        // North
                        yy++;
                        break;
                    case 1:
                        // East
                        xx++;
                        break;
                    case 2:
                        // South
                        yy--;
                        break;
                    default:
                        // West
                        xx--;
                }
                numSteps++;
            }

            totalNumSteps += numSteps;
        }

        double avgSteps = totalNumSteps / (1.0 * trials);
        System.out.println("average number of steps = " + avgSteps);
    }
}

P0.95 结果为 r = 40

  • 重新分配:299.368 ms/op
  • 重新声明 RandomIntSwitch:139.107 ms/op

我们可以做得更好

明确的 if 条件虽然可读性稍差,但(在这种情况下)比 switch

此外,由于我们在单线程上下文中 运行,我们可以将 java.util.Random 替换为 java.util.concurrent.ThreadLocalRandom

此外,显式转换为 double 比乘以 1.0 更清晰,并为我们节省了两个字节码。

P0.95 结果为 r = 40

  • 重新分配:299.368 ms/op
  • 重新声明 RandomIntSwitch:139.107 ms/op
  • 重新声明ThreadLocalRandomIntIf:122.539 ms/op

下面的代码快了将近 2.5 倍。


package com.Whosebug.q56030483;

import java.util.concurrent.ThreadLocalRandom;

@SuppressWarnings("javadoc")
public class RandomWalker {

    public static void main(final String[] args) {

        int r = Integer.parseInt(args[0]);

        int trials = Integer.parseInt(args[1]);

        int totalNumSteps = 0;

        final ThreadLocalRandom threadLocalRandom = ThreadLocalRandom.current();

        for (long i = 0; i < trials; i++) {

            int x = 0;

            int xx = 0;

            int y = 0;

            int yy = 0;

            int numSteps = 0;

            while (Math.abs(x - xx) + Math.abs(y - yy) != r) {

                final int direction= threadLocalRandom.nextInt(4);

                // North
                if (direction == 0) {
                    yy++;

                // East
                } else if (direction == 1) {
                    xx++;

                // South
                } else if (direction == 2) {
                    yy--;

                // West
                } else {
                    xx--;
                }

                numSteps++;
            }

            totalNumSteps += numSteps;
        }

        System.out.println("average number of steps = " + totalNumSteps / (double) trials);

    }
}
Benchmark                                                                (arg)    Mode    Cnt    Score   Error  Units
RandomWalkers.reassign                                                       3  sample  37256    1.611 ± 0.002  ms/op
RandomWalkers.reassign:reassign·p0.00                                        3  sample           1.475          ms/op
RandomWalkers.reassign:reassign·p0.50                                        3  sample           1.593          ms/op
RandomWalkers.reassign:reassign·p0.90                                        3  sample           1.686          ms/op
RandomWalkers.reassign:reassign·p0.95                                        3  sample           1.780          ms/op
RandomWalkers.reassign:reassign·p0.99                                        3  sample           1.999          ms/op
RandomWalkers.reassign:reassign·p0.999                                       3  sample           2.507          ms/op
RandomWalkers.reassign:reassign·p0.9999                                      3  sample           4.367          ms/op
RandomWalkers.reassign:reassign·p1.00                                        3  sample          10.371          ms/op
RandomWalkers.reassign                                                      10  sample   3528   17.029 ± 0.063  ms/op
RandomWalkers.reassign:reassign·p0.00                                       10  sample          15.548          ms/op
RandomWalkers.reassign:reassign·p0.50                                       10  sample          16.712          ms/op
RandomWalkers.reassign:reassign·p0.90                                       10  sample          18.416          ms/op
RandomWalkers.reassign:reassign·p0.95                                       10  sample          18.842          ms/op
RandomWalkers.reassign:reassign·p0.99                                       10  sample          20.690          ms/op
RandomWalkers.reassign:reassign·p0.999                                      10  sample          27.636          ms/op
RandomWalkers.reassign:reassign·p0.9999                                     10  sample          36.176          ms/op
RandomWalkers.reassign:reassign·p1.00                                       10  sample          36.176          ms/op
RandomWalkers.reassign                                                      40  sample    227  268.714 ± 3.270  ms/op
RandomWalkers.reassign:reassign·p0.00                                       40  sample         251.134          ms/op
RandomWalkers.reassign:reassign·p0.50                                       40  sample         262.144          ms/op
RandomWalkers.reassign:reassign·p0.90                                       40  sample         296.223          ms/op
RandomWalkers.reassign:reassign·p0.95                                       40  sample         299.368          ms/op
RandomWalkers.reassign:reassign·p0.99                                       40  sample         303.416          ms/op
RandomWalkers.reassign:reassign·p0.999                                      40  sample         305.136          ms/op
RandomWalkers.reassign:reassign·p0.9999                                     40  sample         305.136          ms/op
RandomWalkers.reassign:reassign·p1.00                                       40  sample         305.136          ms/op
RandomWalkers.redeclareRandomIntSwitch                                       3  sample  69486    0.863 ± 0.001  ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.00        3  sample           0.763          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.50        3  sample           0.843          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.90        3  sample           0.925          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.95        3  sample           1.028          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.99        3  sample           1.155          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.999       3  sample           1.721          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.9999      3  sample           5.181          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p1.00        3  sample           9.355          ms/op
RandomWalkers.redeclareRandomIntSwitch                                      10  sample   7072    8.485 ± 0.040  ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.00       10  sample           7.668          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.50       10  sample           8.143          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.90       10  sample           9.650          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.95       10  sample          10.109          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.99       10  sample          11.960          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.999      10  sample          20.399          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.9999     10  sample          25.919          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p1.00       10  sample          25.919          ms/op
RandomWalkers.redeclareRandomIntSwitch                                      40  sample    466  130.302 ± 0.872  ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.00       40  sample         123.732          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.50       40  sample         128.844          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.90       40  sample         135.083          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.95       40  sample         139.107          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.99       40  sample         155.153          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.999      40  sample         182.452          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p0.9999     40  sample         182.452          ms/op
RandomWalkers.redeclareRandomIntSwitch:redeclareRandomIntSwitch·p1.00       40  sample         182.452          ms/op

RandomWalkers.redeclareThreadLocalRandomIntIf                                               40  sample   96  107.953 ± 2.148  ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p0.00          40  sample        99.746          ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p0.50          40  sample       107.676          ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p0.90          40  sample       113.797          ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p0.95          40  sample       122.539          ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p0.99          40  sample       130.810          ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p0.999         40  sample       130.810          ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p0.9999     40  sample       130.810          ms/op
RandomWalkers.redeclareThreadLocalRandomIntIf:redeclareThreadLocalRandomIntIf·p1.00       40  sample       130.810          ms/op