inner_join() 其中一个键的值范围(年份)

inner_join() with range of values for one of the keys (year)

我有两个格式如下的数据集:

df1
#>           Artist          Album Year
#> 1        Beatles  Sgt. Pepper's 1967
#> 2 Rolling Stones Sticky Fingers 1971

df2
#>            Album Year      Producer
#> 1  Sgt. Pepper's 1966 George Martin
#> 2 Sticky Fingers 1971  Jimmy Miller

我想按专辑和年份做一个 inner_join,但有时 'Year' 字段会关闭一年:例如,Sgt. Peppers 在 df1 中被列为 1967 到 1966 年在 df2 中。

所以如果我 运行:

df3 <- inner_join(df1, df2, by = c("Album", "Year"))

我得到:

df3
#>           Artist          Album Year     Producer
#> 1 Rolling Stones Sticky Fingers 1971 Jimmy Miller

然而,我希望两个专辑都加入,只要像 (df1$Year == df2$Year + 1)|(df1$Year == df2$Year - 1).

我不能简单地通过 'Album' 加入,因为在我的真实数据集中有一些相同标题的 'Albums' 由 'Year' 区分。

以下数据集的代码:

df1 <- data.frame(stringsAsFactors=FALSE,
      Artist = c("Beatles", "Rolling Stones"),
       Album = c("Sgt. Pepper's", "Sticky Fingers"),
        Year = c(1967, 1971)
)
df1

df2 <- data.frame(stringsAsFactors=FALSE,
       Album = c("Sgt. Pepper's", "Sticky Fingers"),
        Year = c(1966, 1971),
    Producer = c("George Martin", "Jimmy Miller")
)
df2

Year + 1添加到df2然后加入?如果您想覆盖两个方向的范围,您还可以添加 Year - 1

library(dplyr)

inner_join(df1, df2 %>%  bind_rows(df2 %>%  mutate(Year = Year + 1)),
                by = c("Album", "Year"))

#          Artist          Album Year      Producer
#1        Beatles  Sgt. Pepper's 1967 George Martin
#2 Rolling Stones Sticky Fingers 1971  Jimmy Miller

我们可以在这里尝试使用 sqldf 包,因为您的要求可以很容易地使用 SQL 连接来表达:

library(sqldf)

sql <- "SELECT t1.Artist, t1.Album, t1.Year, t2.Album, t2.Year, t2.Producer
        FROM df1 t1
        INNER JOIN df2 t2
            ON ABS(t1.Year - t2.Year) <= 1"
df3 <- sqldf(sql)

如果您想 select 两个表中的所有字段,请使用:

SELECT t1.*, t2.* FROM ...

但请注意,通常 SELECT * 是不受欢迎的,最好始终列出 select 的列。

也许 rolling join 会解决这个问题。它适用于您的数据样本,但您的实际数据中可能存在棘手的边缘情况。

在下面的代码中,roll="nearest" 将匹配每张专辑的最近年份值("rolling" 部分仅适用于最后一个连接列,在本例中为 Year)。

library(data.table)

setDT(df1)
setDT(df2)

setkey(df1, Album, Year)
setkey(df2, Album, Year)

joined = df1[df2, roll="nearest"]

joined
           Artist          Album Year      Producer
1:        Beatles  Sgt. Pepper's 1966 George Martin
2: Rolling Stones Sticky Fingers 1971  Jimmy Miller

如果以后有人在看这个问题,上面的回答都很棒。另一个答案是:

  1. 加入所有匹配的相册
  2. 仅过滤掉年份相近的记录:

inner_join(df1, df2, by = c("Album")) %>% 
  filter(abs(Year.x - Year.y)<2)

>           Artist          Album Year.x Year.y      Producer
> 1        Beatles  Sgt. Pepper's   1967   1966 George Martin
> 2 Rolling Stones Sticky Fingers   1971   1971  Jimmy Miller

为了完整起见,这也可以使用 data.tablenon-equi joins:

来解决
library(data.table)
setDT(df1)[, c(.SD, .(ym1 = Year - 1, yp1 = Year + 1))][
  setDT(df2), on = .(Album, ym1 <= Year, yp1 >= Year), nomatch = 0L]
           Artist          Album Year  ym1  yp1      Producer
1:        Beatles  Sgt. Pepper's 1967 1966 1966 George Martin
2: Rolling Stones Sticky Fingers 1971 1971 1971  Jimmy Miller

setDT(df1)[, c("ym1", "yp1") := .(Year - 1, Year + 1)][setDT(df2), 
           on = .(Album, ym1 <= Year, yp1 >= Year), nomatch = 0L]
           Artist          Album Year  ym1  yp1      Producer
1:        Beatles  Sgt. Pepper's 1967 1966 1966 George Martin
2: Rolling Stones Sticky Fingers 1971 1971 1971  Jimmy Miller

修改 df1.


顺便说一句:有一个功能请求 https://github.com/Rdatatable/data.table/issues/1639 允许 on 中的 on-the-fly 列。如果实现,上面的表达式将变为

setDT(df1)[setDT(df2), on = .(Album, Year - 1 <= Year, Year + 1 >= Year), nomatch = 0L]