Reactor - 理解 .flatMap() 中的线程池
Reactor - understanding thread pools in .flatMap()
我试图了解响应式编程的真正工作原理。我为此准备了简单的演示:来自 Spring Framework 的 reactive WebClient
将请求发送到简单的 rest api 并且此客户端在每个操作中打印线程名称。
休息api:
@RestController
@SpringBootApplication
public class RestApiApplication {
public static void main(String[] args) {
SpringApplication.run(RestApiApplication.class, args);
}
@PostMapping("/resource")
public void consumeResource(@RequestBody Resource resource) {
System.out.println(String.format("consumed resource: %s", resource.toString()));
}
}
@Data
@AllArgsConstructor
class Resource {
private final Long id;
private final String name;
}
以及最重要的 - 响应式 Web 客户端:
@SpringBootApplication
public class ReactorWebclientApplication {
public static void main(String[] args) {
SpringApplication.run(ReactorWebclientApplication.class, args);
}
private final TcpClient tcpClient = TcpClient.create();
private final WebClient webClient = WebClient.builder()
.clientConnector(new ReactorClientHttpConnector(HttpClient.from(tcpClient)))
.baseUrl("http://localhost:8080")
.build();
@PostConstruct
void doRequests() {
var longs = LongStream.range(1L, 10_000L)
.boxed()
.toArray(Long[]::new);
var longsStream = Stream.of(longs);
Flux.fromStream(longsStream)
.map(l -> {
System.out.println(String.format("------- map [%s] --------", Thread.currentThread().getName()));
return new Resource(l, String.format("name %s", l));
})
.filter(res -> {
System.out.println(String.format("------- filter [%s] --------", Thread.currentThread().getName()));
return !res.getId().equals(11_000L);
})
.flatMap(res -> {
System.out.println(String.format("------- flatmap [%s] --------", Thread.currentThread().getName()));
return webClient.post()
.uri("/resource")
.syncBody(res)
.header("Content-Type", "application/json")
.header("Accept", "application/json")
.retrieve()
.bodyToMono(Resource.class)
.doOnSuccess(ignore -> System.out.println(String.format("------- onsuccess [%s] --------", Thread.currentThread().getName())))
.doOnError(ignore -> System.out.println(String.format("------- onerror [%s] --------", Thread.currentThread().getName())));
})
.blockLast();
}
}
@JsonIgnoreProperties(ignoreUnknown = true)
class Resource {
private final Long id;
private final String name;
@JsonCreator
Resource(@JsonProperty("id") Long id, @JsonProperty("name") String name) {
this.id = id;
this.name = name;
}
Long getId() {
return id;
}
String getName() {
return name;
}
@Override
public String toString() {
final StringBuilder sb = new StringBuilder("Resource{");
sb.append("id=").append(id);
sb.append(", name='").append(name).append('\'');
sb.append('}');
return sb.toString();
}
}
问题是行为与我预期的不同。
我预计 .map()
、.filter()
和 .flatMap()
的每次调用都将在 main
线程上执行,而 .doOnSuccess()
或 [= 的每次调用20=] 将在 nio 线程池中的线程上执行。所以我希望日志看起来像:
------- map [main] --------
------- filter [main] --------
------- flatmap [main] --------
(and so on...)
------- onsuccess [reactor-http-nio-2] --------
(and so on...)
但我得到的日志是:
------- map [main] --------
------- filter [main] --------
------- flatmap [main] --------
------- map [main] --------
------- filter [main] --------
------- flatmap [main] --------
------- onsuccess [reactor-http-nio-2] --------
------- onsuccess [reactor-http-nio-6] --------
------- onsuccess [reactor-http-nio-4] --------
------- onsuccess [reactor-http-nio-8] --------
------- map [reactor-http-nio-2] --------
------- filter [reactor-http-nio-2] --------
------- flatmap [reactor-http-nio-2] --------
------- map [reactor-http-nio-2] --------
.map()
、.filter()
和 .flatMap()
中的每个下一次登录都是在来自 reactor-http-nio 的线程上完成的。
下一个难以理解的事实是在主线程和reactor-http-nio上执行的操作之间的比例总是不同的。有时所有操作 .map()
、.filter()
和 .flatMap()
都在主线程上执行。
Reactor 和 RxJava 一样,可以被认为是并发不可知的。也就是说,它不强制执行并发模型。相反,它让您(开发人员)掌握一切。但是,这并不妨碍库帮助您处理并发。
获得Flux
或Mono
并不一定意味着它运行在专用线程中。相反,大多数运算符继续在前一个运算符执行的线程中工作。除非指定,否则最顶层的运算符(源)本身在进行 subscribe()
调用的线程上运行。
可以找到 Project Reactor 相关文档 here。
根据您的代码,以下片段:
webClient.post()
.uri("/resource")
.syncBody(res)
.header("Content-Type", "application/json")
.header("Accept", "application/json")
.retrieve()
.bodyToMono(Resource.class)
导致线程从 main 切换到 netty 的工作池 。之后,以下所有操作均由netty工作线程执行。
如果你想控制这个行为,你应该在你的代码中添加一个publishOn(...)
语句,例如:
webClient.post()
.uri("/resource")
.syncBody(res)
.header("Content-Type", "application/json")
.header("Accept", "application/json")
.retrieve()
.bodyToMono(Resource.class)
.publishOn(Schedulers.elastic())
这样,弹性调度程序线程池将执行以下任何操作。
另一个示例是使用专用调度程序处理 HTTP 请求执行后的繁重任务。
import static com.github.tomakehurst.wiremock.client.WireMock.aResponse;
import static com.github.tomakehurst.wiremock.client.WireMock.get;
import static com.github.tomakehurst.wiremock.client.WireMock.urlEqualTo;
import com.github.tomakehurst.wiremock.WireMockServer;
import java.util.concurrent.TimeUnit;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.springframework.web.reactive.function.client.ClientResponse;
import org.springframework.web.reactive.function.client.WebClient;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import reactor.core.scheduler.Schedulers;
import ru.lanwen.wiremock.ext.WiremockResolver;
import ru.lanwen.wiremock.ext.WiremockResolver.Wiremock;
import ru.lanwen.wiremock.ext.WiremockUriResolver;
import ru.lanwen.wiremock.ext.WiremockUriResolver.WiremockUri;
@ExtendWith({
WiremockResolver.class,
WiremockUriResolver.class
})
public class ReactiveThreadsControlTest {
private static int concurrency = 1;
private final WebClient webClient = WebClient.create();
@Test
public void slowServerResponsesTest(@Wiremock WireMockServer server, @WiremockUri String uri) {
String requestUri = "/slow-response";
server.stubFor(get(urlEqualTo(requestUri))
.willReturn(aResponse().withStatus(200)
.withFixedDelay((int) TimeUnit.SECONDS.toMillis(2)))
);
Flux
.generate(() -> Integer.valueOf(1), (i, sink) -> {
System.out.println(String.format("[%s] Emitting next value: %d", Thread.currentThread().getName(), i));
sink.next(i);
return i + 1;
})
.subscribeOn(Schedulers.single())
.flatMap(i ->
executeGet(uri + requestUri)
.publishOn(Schedulers.elastic())
.map(response -> {
heavyTask();
return true;
})
, concurrency)
.subscribe();
blockForever();
}
private void blockForever() {
Object monitor = new Object();
synchronized (monitor) {
try {
monitor.wait();
} catch (InterruptedException ex) {
}
}
}
private Mono<ClientResponse> executeGet(String path) {
System.out.println(String.format("[%s] About to execute an HTTP GET request: %s", Thread.currentThread().getName(), path));
return webClient
.get()
.uri(path)
.exchange();
}
private void heavyTask() {
try {
System.out.println(String.format("[%s] About to execute a heavy task", Thread.currentThread().getName()));
Thread.sleep(TimeUnit.SECONDS.toMillis(20));
} catch (InterruptedException ex) {
}
}
}
我试图了解响应式编程的真正工作原理。我为此准备了简单的演示:来自 Spring Framework 的 reactive WebClient
将请求发送到简单的 rest api 并且此客户端在每个操作中打印线程名称。
休息api:
@RestController
@SpringBootApplication
public class RestApiApplication {
public static void main(String[] args) {
SpringApplication.run(RestApiApplication.class, args);
}
@PostMapping("/resource")
public void consumeResource(@RequestBody Resource resource) {
System.out.println(String.format("consumed resource: %s", resource.toString()));
}
}
@Data
@AllArgsConstructor
class Resource {
private final Long id;
private final String name;
}
以及最重要的 - 响应式 Web 客户端:
@SpringBootApplication
public class ReactorWebclientApplication {
public static void main(String[] args) {
SpringApplication.run(ReactorWebclientApplication.class, args);
}
private final TcpClient tcpClient = TcpClient.create();
private final WebClient webClient = WebClient.builder()
.clientConnector(new ReactorClientHttpConnector(HttpClient.from(tcpClient)))
.baseUrl("http://localhost:8080")
.build();
@PostConstruct
void doRequests() {
var longs = LongStream.range(1L, 10_000L)
.boxed()
.toArray(Long[]::new);
var longsStream = Stream.of(longs);
Flux.fromStream(longsStream)
.map(l -> {
System.out.println(String.format("------- map [%s] --------", Thread.currentThread().getName()));
return new Resource(l, String.format("name %s", l));
})
.filter(res -> {
System.out.println(String.format("------- filter [%s] --------", Thread.currentThread().getName()));
return !res.getId().equals(11_000L);
})
.flatMap(res -> {
System.out.println(String.format("------- flatmap [%s] --------", Thread.currentThread().getName()));
return webClient.post()
.uri("/resource")
.syncBody(res)
.header("Content-Type", "application/json")
.header("Accept", "application/json")
.retrieve()
.bodyToMono(Resource.class)
.doOnSuccess(ignore -> System.out.println(String.format("------- onsuccess [%s] --------", Thread.currentThread().getName())))
.doOnError(ignore -> System.out.println(String.format("------- onerror [%s] --------", Thread.currentThread().getName())));
})
.blockLast();
}
}
@JsonIgnoreProperties(ignoreUnknown = true)
class Resource {
private final Long id;
private final String name;
@JsonCreator
Resource(@JsonProperty("id") Long id, @JsonProperty("name") String name) {
this.id = id;
this.name = name;
}
Long getId() {
return id;
}
String getName() {
return name;
}
@Override
public String toString() {
final StringBuilder sb = new StringBuilder("Resource{");
sb.append("id=").append(id);
sb.append(", name='").append(name).append('\'');
sb.append('}');
return sb.toString();
}
}
问题是行为与我预期的不同。
我预计 .map()
、.filter()
和 .flatMap()
的每次调用都将在 main
线程上执行,而 .doOnSuccess()
或 [= 的每次调用20=] 将在 nio 线程池中的线程上执行。所以我希望日志看起来像:
------- map [main] --------
------- filter [main] --------
------- flatmap [main] --------
(and so on...)
------- onsuccess [reactor-http-nio-2] --------
(and so on...)
但我得到的日志是:
------- map [main] --------
------- filter [main] --------
------- flatmap [main] --------
------- map [main] --------
------- filter [main] --------
------- flatmap [main] --------
------- onsuccess [reactor-http-nio-2] --------
------- onsuccess [reactor-http-nio-6] --------
------- onsuccess [reactor-http-nio-4] --------
------- onsuccess [reactor-http-nio-8] --------
------- map [reactor-http-nio-2] --------
------- filter [reactor-http-nio-2] --------
------- flatmap [reactor-http-nio-2] --------
------- map [reactor-http-nio-2] --------
.map()
、.filter()
和 .flatMap()
中的每个下一次登录都是在来自 reactor-http-nio 的线程上完成的。
下一个难以理解的事实是在主线程和reactor-http-nio上执行的操作之间的比例总是不同的。有时所有操作 .map()
、.filter()
和 .flatMap()
都在主线程上执行。
Reactor 和 RxJava 一样,可以被认为是并发不可知的。也就是说,它不强制执行并发模型。相反,它让您(开发人员)掌握一切。但是,这并不妨碍库帮助您处理并发。
获得Flux
或Mono
并不一定意味着它运行在专用线程中。相反,大多数运算符继续在前一个运算符执行的线程中工作。除非指定,否则最顶层的运算符(源)本身在进行 subscribe()
调用的线程上运行。
可以找到 Project Reactor 相关文档 here。
根据您的代码,以下片段:
webClient.post()
.uri("/resource")
.syncBody(res)
.header("Content-Type", "application/json")
.header("Accept", "application/json")
.retrieve()
.bodyToMono(Resource.class)
导致线程从 main 切换到 netty 的工作池 。之后,以下所有操作均由netty工作线程执行。
如果你想控制这个行为,你应该在你的代码中添加一个publishOn(...)
语句,例如:
webClient.post()
.uri("/resource")
.syncBody(res)
.header("Content-Type", "application/json")
.header("Accept", "application/json")
.retrieve()
.bodyToMono(Resource.class)
.publishOn(Schedulers.elastic())
这样,弹性调度程序线程池将执行以下任何操作。
另一个示例是使用专用调度程序处理 HTTP 请求执行后的繁重任务。
import static com.github.tomakehurst.wiremock.client.WireMock.aResponse;
import static com.github.tomakehurst.wiremock.client.WireMock.get;
import static com.github.tomakehurst.wiremock.client.WireMock.urlEqualTo;
import com.github.tomakehurst.wiremock.WireMockServer;
import java.util.concurrent.TimeUnit;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.springframework.web.reactive.function.client.ClientResponse;
import org.springframework.web.reactive.function.client.WebClient;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import reactor.core.scheduler.Schedulers;
import ru.lanwen.wiremock.ext.WiremockResolver;
import ru.lanwen.wiremock.ext.WiremockResolver.Wiremock;
import ru.lanwen.wiremock.ext.WiremockUriResolver;
import ru.lanwen.wiremock.ext.WiremockUriResolver.WiremockUri;
@ExtendWith({
WiremockResolver.class,
WiremockUriResolver.class
})
public class ReactiveThreadsControlTest {
private static int concurrency = 1;
private final WebClient webClient = WebClient.create();
@Test
public void slowServerResponsesTest(@Wiremock WireMockServer server, @WiremockUri String uri) {
String requestUri = "/slow-response";
server.stubFor(get(urlEqualTo(requestUri))
.willReturn(aResponse().withStatus(200)
.withFixedDelay((int) TimeUnit.SECONDS.toMillis(2)))
);
Flux
.generate(() -> Integer.valueOf(1), (i, sink) -> {
System.out.println(String.format("[%s] Emitting next value: %d", Thread.currentThread().getName(), i));
sink.next(i);
return i + 1;
})
.subscribeOn(Schedulers.single())
.flatMap(i ->
executeGet(uri + requestUri)
.publishOn(Schedulers.elastic())
.map(response -> {
heavyTask();
return true;
})
, concurrency)
.subscribe();
blockForever();
}
private void blockForever() {
Object monitor = new Object();
synchronized (monitor) {
try {
monitor.wait();
} catch (InterruptedException ex) {
}
}
}
private Mono<ClientResponse> executeGet(String path) {
System.out.println(String.format("[%s] About to execute an HTTP GET request: %s", Thread.currentThread().getName(), path));
return webClient
.get()
.uri(path)
.exchange();
}
private void heavyTask() {
try {
System.out.println(String.format("[%s] About to execute a heavy task", Thread.currentThread().getName()));
Thread.sleep(TimeUnit.SECONDS.toMillis(20));
} catch (InterruptedException ex) {
}
}
}